Effect of Root, Stem, Inflorescence Extracts and Root Exudation of Lepidium Pinnatifidum Ledeb. on Triticum Aestivum L. and Zea Mays L. and Few Biological Applications of Its Root Exudates

Authors

  • Sania Bibi Department of Botany, Government Girls Degree College, Nowshera, Pakistan
  • Mohib Shah Department of Botany, Abdul Wali Khan University, Mardan, Pakistan

DOI:

https://doi.org/10.70749/ijbr.v3i3.1920

Keywords:

Allelopathic potential, Lepidium pinnatidifum Ledeb, Triticum aestivum L, Zea mays L, Root exudates, Insecticidal, Phytotoxic, Antioxidant

Abstract

Plants have the ability to affect the physiology of other plants through allelopathic interactions. The purpose of the present work is to evaluate the allelopathic potential of root, shoot, inflorescence extracts and root exudates of Lepidium pinnatifidum Ledeb. on some selected agronomic plants, Triticum aestivum L. and Zea mays L. And also, to find out few biological applications of its root exudates. The study revealed that Lepidium pinnatifidum Ledeb. is highly toxic to the seed germination, root and shoot length, fresh and dry weight and metabolite concentration of Triticum aestivum L. and Zea mays L. Root, stem and inflorescence extracts of the plant under study showed a complete inhibition of seed germination of wheat and maize. The effect of root exudates on wheat and maize was also inhibitory but less intense as compared to the plant extract. The root exudates of Lepidium pinnatifidum Ledeb. also showed insecticidal, phytotoxic, antioxdant activities successfully. Thus, it can be concluded that Lepidium pinnatifidum Ledeb. has a strong inhibitory effect on crop plants and also its high toxicity of root exudates suggests the presence of a variety of allelochemicals, thus can be used for medicinal purpose as well. Similarly, the plant can be used as herbicide, insecticide and as an antioxidant.

Downloads

Download data is not yet available.

References

Alif, A.S. (2019). Comparative bioassay of silver nanoparticles and malathion on infestation of red flour beetle, Tribolium castaneum. J. Basic Appl. Zool., 80, 1–10. https://doi.org/10.1186/s41936-019-0124-0

Barnes, J. P., Putnam, A. R., & Burke, B. (1986). Allelopathic activity of rye (Secale cereale L.). The science of allelopathy, 271-286. https://doi.org/10.1017/s0043174500067035

Bertin, C., Yang, X., & Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256(1), 67-83. https://doi.org/10.1023/a:1026290508166

Bode, H.R. (1958). Beitrage Zur Kenntnis allelopatischer Ercheinungen bei einigen juglandacean. Planta, 51, 440-480. https://doi.org/10.1007/bf01883337

Cheema, Z. A., Farooq, M., & Khaliq, A. (2013). Application of allelopathy in crop production: success story from Pakistan Allelopathy (pp. 113-143): Springer. https://doi.org/10.1007/978-3-642-30595-5_6

Davis, E.F. (1928). The toxic principles of Juglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants. Botany, 15(6), 620.

https://doi.org/10.5962/p.333848

Duke, S.O., N. Cedergreen, E.D Vellini, and Belz, R.G. (2006). Hormesis: is it an important factor in herbicides use and allelopathy? Outlooks on pests Management 19, 29-33.

Egle K, Römer W, Keller H. (2003) Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie 23:511–518

Fitter, A. (2003). Making Allelopathy respectable. Science, 301, 1337-1338.

Gross, E. M. (2003). Allelopathy of aquatic autotrophs. Critical reviews in plant sciences, 22(3-4), 313-339.

Han, X., Cheng, Z., Meng, H., Yang, X., Ahmad, I. (2013). Allelopathic effect of decompose garlic (Alium sativum L.) stalk on lettuce (L. sative var crispa L.). Journal of Botany, 45(1), 225-233.

Hashmi, H.F. (2021). Qualitative and quantitative Analysis of phtochemicals in Lepidium pinnatifidum Ledeb. Sch. Int. J. Tradit complement Med, 4(5), 67-75.

Johnson, S.N., & Gregory, P.J. (2006). Chemically-mediated host-plant location and selection of root-feeding insects. Physiological Entomology, 31(1), 1-13. https://doi.org/10.1111/j.1365-3032.2005.00487.x

Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G (2020). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med., 11, 37–44.

Kato-Noguchi, H. (2020). Involvement of Allelopathy in the Invasive Potential of Tithonia diversifolia. Plants, 9(6), 766.

Kato-Noguchi, H., & Kurniadie, D. (2021). Allelopathy of Lantana camara as an invasive plant. Plants, 10(5),1028. https://doi.org/10.3390/plants10051028

Krumsri, R., Boonmee, S., & Hisashi, K. N. (2019). Evaluation of the allelopathic potential of leaf extracts from Dischidia imbricate (Blume) Steud. On the seedling growth of six test plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1019-1024.

Li, J., Chen, L., Chen, Q., Miao, Y., Peng, Z., Huang, B., … & Du, H. (2021). Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific reports 11(1), 1-15.

Li, Z.-H., Wang, Q., Ruan, X., Pan, C.-D., & Jiang, D.-A. (2010). Phenolics and plant allelopathy. Molecules, 15(12), 8933-8952. https://doi.org/10.3390/molecules15128933

Macías, F. A., Marín, D., Oliveros-Bastidas, A., Varela, R. M., Simonet, A. M., Carrera, C., & Molinillo, J. M. (2003). Allelopathy as a new strategy for sustainable ecosystems development. Biological sciences in Space, 17(1), 18-23.

Molisch, H. (2001). The influence of one plant on another: allelopathy: Scientific Publishers (India).

Naby, K.Y., Ali, K.A. (2021). Allelopathic potential of Sorghum bicolor L. root exudates on growth and chlorophyll content of wheat and some grassy weeds. In IOP Conference Series: Earth and Environmental Science, 761(1), 012085. https://doi.org/10.1088/1755-1315/761/1/012085

Novak, N., Novak, M., Barić, K., Šćepanović, M., & Ivić, D. (2018). Allelopathic potential of segetal and ruderal invasive alien plants. Journal of Central European Agriculture, 19(2), 408-422.

Olofsdotter, M. (2001). Rice—a step toward use of allelopathy. Agronomy Journal, 93(1), 3-8.

Rabab, A., Kanwal, S., & Mahmood, T. (2020). Phytochemical investigation of medicinally important plants of the potohar region of Pakistan. Journal of Traditional Chinese Medicines, 40(5), 883. https://doi.org/10.36106/ijar/3418475

Rech.f. (1954). Lepidium pinnatifidum. Math - Nat. Kl. Osterr. Akad. Wiss, 7, 58.

Rice, E.L. (1984). Allelopathy, Second Edition. Academic press, Orlando. 51-63.

Rice, E.L. (1964). Chemical warfare between between plants. Biology. Science, 38, 67-74.

Rovira, A. D. (1969). Plant root exudates. The botanical review, 35(1), 35-57.

Sultana, F.; Saifi, M.A.; Syed, R.; Mani, G.S.; Shaik, S.P.; Osas, E.G.S.; Godugu, C.; Shahjahan, S.; Kamal, A. (2019) Synthesis of 2-anilinopyridyl linked benzothiazole hydrazones as apoptosis inducing cytotoxic agents. New J. Chem. 43, 7150–7161. https://doi.org/10.1039/c8nj06517a

Tahir, N.A., Qader, L.O., Azeez, H.A., & Rashid, J.S. (2018). Inhibitory allelopathic effectors of Moringa oliefera Lamk plant extracts on wheat and Sinapis arvensis L. Allelopathy Journal, 44, 35-4.

Tutin, T.G., Heywood, V.H., Burges, N.A., Valentintine, D.H., Walters, S.M., David, A. (1964). Flora Europoea: Plantaginaceae to Compositae (and rubiaceae). Cambridge University Press, London. https://doi.org/10.1126/science.147.3661.1024

Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A. (2014). Agroecological practices for Sustainable Agriculture, A Review. Agronomy for sustainable development 34 (1), 1-20.

Whittaker, R. H., & Feeny, P. P. (1971). Allelochemics: Chemical Interactions between Species: Chemical agents are of major significance in the adaptation of species and organization of communities. Science, 171(3973), 757-770.

Yang, B., & Li, J. (2022). Phtotoxicity of root exudates of invasive Solidago canadensis on co-occuring native and invasive plant species. Pak. J. Bot, 54(3), 1019-1024.

Zeng, R. S. (2008). Allelopathy in Chinese ancient and modern agriculture. Allelopathy in Sustainable Agriculture and Forestry, 39-59.

https://doi.org/10.1007/978-0-387-77337-7_3

Downloads

Published

2024-12-31

How to Cite

Effect of Root, Stem, Inflorescence Extracts and Root Exudation of Lepidium Pinnatifidum Ledeb. on Triticum Aestivum L. and Zea Mays L. and Few Biological Applications of Its Root Exudates. (2024). Indus Journal of Bioscience Research, 2(02), 1633-1647. https://doi.org/10.70749/ijbr.v3i3.1920