Relationship between Systemic Inflammatory Biomarkers and LAD Plaque Lesion Localization and Severity in Patients with Acute ST-segment Elevation Myocardial Infarction
DOI:
https://doi.org/10.70749/ijbr.v3i8.1925Keywords:
STEMI, LAD, NLR, PLR, CAR, InflammationAbstract
Introduction: Acute ST-segment elevation myocardial infarction (STEMI) is a leading cause of mortality, driven by coronary artery disease and inflammation. Systemic inflammatory biomarkers, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and C-reactive protein-to-albumin ratio (CAR), are linked to lesion severity and localization in the left anterior descending (LAD) artery, but local data from Pakistan are scarce. Objective: To assess the relationship between systemic inflammatory biomarkers (NLR, PLR, CAR) and the localization and severity of LAD plaque lesions in STEMI patients. Material and Methods: This retrospective study at Dr. Ruth K.M. Pfau Civil Hospital, Karachi from April, 2024 to September, 2024, included 87 STEMI patients with proximal or mid-LAD lesions. Biomarkers were correlated with angiographic findings using SPSS version 23.0. Results: Proximal LAD lesions (N=53) showed higher median NLR (3.00 vs. 1.50), PLR (109.75 vs. 70.00), and CAR (35.71 vs. 14.00) compared to mid-LAD lesions (N=33), indicating greater inflammatory burden (p<0.05). Conclusion: Elevated NLR, PLR, and CAR are associated with proximal LAD lesions, offering cost-effective risk stratification tools for STEMI patients in resource-limited settings.
Downloads
References
1. Oprescu, N., Micheu, M. M., Scafa-Udriste, A., Popa-Fotea, N., & Dorobantu, M. (2021). Inflammatory markers in acute myocardial infarction and the correlation with the severity of coronary heart disease. Annals of Medicine, 53(1), 1042-1048.
https://doi.org/10.1080/07853890.2021.1916070
2. Deng, Y., Huang, X., Pan, J., & Wang, C. (2025). Assessment of the relationship between C-reactive protein-to-Albumin ratio and culprit lesion location in patients with ST-segment elevation myocardial infarction. British Journal of Hospital Medicine, 86(5), 1-15.
https://doi.org/10.12968/hmed.2024.0867
3. Matyas, B., Polexa, S., Benedek, I., Buicu, A., & Benedek, T. (2021). Biomarkers of systemic versus local inflammation during the acute phase of myocardial infarction, as predictors of post-infarction heart failure. Journal Of Cardiovascular Emergencies, 7(3), 70-76.
https://doi.org/10.2478/jce-2021-0014
4. Zhou, J., Chen, R., Liu, C., Zhou, P., Li, J., Wang, Y., Zhao, X., Zhao, H., Song, L., & Yan, H. (2021). Associations of NETs with inflammatory risk and atherosclerotic severity in ST-segment elevation myocardial infarction. Thrombosis Research, 203, 5-11.
https://doi.org/10.1016/j.thromres.2021.04.015
5. Liu, C., Yang, F., Hu, Y., Wang, L., Li, X., Cong, H., & Zhang, J. (2025). The relationships between inflammatory biomarkers, plaque characteristics, and macrophage clusters in coronary plaque: A quantitative assessment of macrophages based on optical coherence tomography. Frontiers in Cardiovascular Medicine, 12.
https://doi.org/10.3389/fcvm.2025.1625239
6. Bruno, F., Adjibodou, B., Obeid, S., Kraler, S. C., Wenzl, F. A., Akhtar, M. M., Denegri, A., Roffi, M., Muller, O., Von Eckardstein, A., Räber, L., Templin, C., & Lüscher, T. F. (2023). Occlusion of the infarct-related coronary artery presenting as acute coronary syndrome with and without ST-elevation: Impact of inflammation and outcomes in a real-world prospective cohort. European Heart Journal - Quality of Care and Clinical Outcomes, 9(6), 564-574.
https://doi.org/10.1093/ehjqcco/qcad027
7. Bochaton, T., Leboube, S., Paccalet, A., Crola Da Silva, C., Buisson, M., Mewton, N., Amaz, C., Varillon, Y., Bonnefoy-Cudraz, E., Rioufol, G., Cho, T., Ovize, M., Bidaux, G., Nighoghossian, N., & Mechtouff, L. (2022). Impact of age on systemic inflammatory profile of patients with ST-segment–elevation myocardial infarction and acute ischemic stroke. Stroke, 53(7), 2249-2259.
https://doi.org/10.1161/strokeaha.121.036806
8. Bouzidi, N., & Gamra, H. (2023). Relationship between serum interleukin-6 levels and severity of coronary artery disease undergoing percutaneous coronary intervention. BMC Cardiovascular Disorders, 23(1).
https://doi.org/10.1186/s12872-023-03570-8
9. Wang, X., Li, B., Hu, Y., Xiao, S., Guo, M., Xu, T., Wu, H., Huan, C., Yin, J., Zhu, H., & Pan, D. (2022). Novel grading system for ischemia‒reperfusion injury manifestations in patients with acute ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. Scientific Reports, 12(1).
https://doi.org/10.1038/s41598-022-24019-6
10. Buicu, F., Rodean, I. P., Halațiu, V. B., Chițu, I. M., & Benedek, T. (2024). The Link Between Periostin Serum Levels and Inflammation in Patients with Acute Coronary Syndrome. Journal of Cardiovascular Emergencies, 10(4), 151-158.
https://doi.org/10.2478/jce-2024-0020
11. Díaz-Chirón, L., Negral, L., Megido, L., Suárez-Peña, B., Domínguez-Rodríguez, A., Rodríguez, S., ... & Avanzas, P. (2021). Relationship between exposure to sulphur dioxide air pollution, white cell inflammatory biomarkers and enzymatic infarct size in patients with ST-segment elevation acute coronary syndromes. European Cardiology Review, 16, e50.
https://doi.org/10.15420/ecr.2021.37
12. Dhilion, H. R., Nasution, A. N., & Sitepu, A. (2024). Association between systemic inflammatory immunity index and Intracoronary thrombus burden in acute myocardial infarction with ST segment elevation (IMA EST) patients undergoing primary percutaneous coronary intervention at Haji Adam Malik hospital. Journal of Society Medicine, 3(2), 39-47.
https://doi.org/10.47353/jsocmed.v3i2.122
13. Ji, J., Qiao, M., Ding, Y., Wei, X., Wan, D., Wu, L., & Liu, H. (2025). Predictive potential of CRTP5 and SII for coronary artery severity and myocardial fibrosis in patients with NSTE-ACS: An exploratory biomarker study. Journal of Inflammation Research, 18, 7127-7138.
https://doi.org/10.2147/jir.s513574
14. Cundari, G., Marchitelli, L., Pambianchi, G., Catapano, F., Conia, L., Stancanelli, G., Catalano, C., & Galea, N. (2024). Imaging biomarkers in cardiac CT: Moving beyond simple coronary anatomical assessment. La radiologia medica, 129(3), 380-400.
https://doi.org/10.1007/s11547-024-01771-5
15. Bao, J., Gao, Z., Hu, Y., Liu, W., Ye, L., & Wang, L. (2023). Serum fibrinogen-to-albumin ratio predicts new-onset atrial fibrillation risk during hospitalization in patients with acute myocardial infarction after percutaneous coronary intervention: A retrospective study. BMC Cardiovascular Disorders, 23(1).
https://doi.org/10.1186/s12872-023-03480-9
16. Matter, M. A., Paneni, F., Libby, P., Frantz, S., Stähli, B. E., Templin, C., Mengozzi, A., Wang, Y., Kündig, T. M., Räber, L., Ruschitzka, F., & Matter, C. M. (2023). Inflammation in acute myocardial infarction: The good, the bad and the ugly. European Heart Journal, 45(2), 89-103.
https://doi.org/10.1093/eurheartj/ehad486
17. Karabulut, D., Erdal, G. Ş., Karabulut, U., Işıksaçan, N., Satılmışoğlu, M. H., Kasapoğlu, P., & Turhan, N. (2021). Can biomarkers indicate the severity of coronary artery disease?. Cukurova Medical Journal, 46(3), 883-888.
https://dergipark.org.tr/en/pub/cumj/issue/62102/865009
18. Dong, X., Zhu, C., Li, N., Shi, K., Si, N., Wang, Y., Pan, H., Shi, Z., Wang, S., Zhao, M., & Zhang, T. (2023). Identification of patients with acute coronary syndrome and representation of their degree of inflammation: Application of pericoronary adipose tissue within different radial distances of the proximal coronary arteries. Quantitative Imaging in Medicine and Surgery, 13(6), 3644-3659.
https://doi.org/10.21037/qims-22-864
19. Nurkoç, S. G., & Karayiğit, O. (2022). The association between no-reflow and serum uric acid/Albumin ratio in patients with acute myocardial infarction without ST elevation. Angiology, 75(1), 72-78.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.