Antimicrobial Resistance (AMR) Crisis Novel Strategies for Antibiotic Stewardship and Discovery
DOI:
https://doi.org/10.70749/ijbr.v3i8.1975Keywords:
Antibiotic Use, Antimicrobial Resistance, Knowledge, Attitudes, Behavior, Awareness Campaigns, Misuse, Public Health, Education, PakistanAbstract
The purpose of the study was to examine the knowledge, attitudes, and behaviors of the population against antibiotic use and antimicrobial resistance (AMR) and analyze how such factors as age, education, and awareness campaigns influence antibiotic misuse. Structured questionnaires were used to survey 250 samples consisting of patients and general people in Punjab, Pakistan. Using descriptive statistics, 46 percent of the respondents advised on inappropriate use of antibiotics like taking them without prescription or failing them, among others. Pearson correlation demonstrated that there is a definite positive connection between knowledge and attitudes (r = .482, p < .01) i.e. more informed people displayed more responsible attitudes regarding AMR. The regression analysis revealed that both age (0.241, p = .001) and the educational level (0.289, p = .001) were predictors of misuse power but the segment occupation type was not significant (0.132, p = .080). The model was significant, 26.3 of the variance was explained in the misuse behavior. Due to the significant difference in the tendency to use antibiotics without proper reasons among people who were exposed to awareness campaigns (chi-square = 12.346, p<.001) the results of the chi-square analysis were presented along with the mentioning of the significance value, p <.001. The results are consistent with previous research that identifies the power of the education of the population in managing AMR. These outcomes imply that the misuse of antibiotics can be decreased by raising awareness, enhancing access to the right information, and educating every population group, in particular, younger generations. The study recommends beefed-up public health promotion, increased regulatory control of prescriptions, and policy-based preventive measures that would avert the increasing risks of antimicrobial resistance.
Downloads
References
1. Bhaskar, P. (2023). Antibiotic resistance and a dire need for novel and innovative therapies: The impending crisis. Syncytia, 27-35.
https://doi.org/10.52679/syncytia.2023.0w8yx9
2. Brüssow, H. (2024). The antibiotic resistance crisis and the development of new antibiotics. Microbial Biotechnology, 17(7).
https://doi.org/10.1111/1751-7915.14510
3. Iskandar, K., Murugaiyan, J., Hammoudi Halat, D., Hage, S. E., Chibabhai, V., Adukkadukkam, S., Roques, C., Molinier, L., Salameh, P., & Van Dongen, M. (2022). Antibiotic discovery and resistance: The chase and the race. Antibiotics, 11(2), 182.
https://doi.org/10.3390/antibiotics11020182
4. Majumder, M. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., & Gittens-St Hilaire, M. (2020). Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infection and Drug Resistance, 13, 4713-4738.
https://doi.org/10.2147/idr.s290835
5. Inoue, H. (2019). Strategic approach for combating antimicrobial resistance (AMR). Global Health & Medicine, 1(2), 61-64.
https://doi.org/10.35772/ghm.2019.01026
6. Krell, T., & Matilla, M. A. (2021). Antimicrobial resistance: Progress and challenges in antibiotic discovery and anti‐infective therapy. Microbial Biotechnology, 15(1), 70-78.
https://doi.org/10.1111/1751-7915.13945
7. Coque, T. M., Cantón, R., Pérez-Cobas, A. E., Fernández-de-Bobadilla, M. D., & Baquero, F. (2023). Antimicrobial resistance in the global health network: Known unknowns and challenges for efficient responses in the 21st century. Microorganisms, 11(4), 1050.
https://doi.org/10.3390/microorganisms11041050
8. Oliveira, M., Antunes, W., Mota, S., Madureira-Carvalho, Á., Dinis-Oliveira, R. J., & Dias da Silva, D. (2024). An overview of the recent advances in antimicrobial resistance. Microorganisms, 12(9), 1920.
https://doi.org/10.3390/microorganisms12091920
9. Walesch, S., Birkelbach, J., Jézéquel, G., Haeckl, F. P., Hegemann, J. D., Hesterkamp, T., Hirsch, A. K., Hammann, P., & Müller, R. (2022). Fighting antibiotic resistance—strategies and (pre)clinical developments to find new antibacterials. EMBO reports, 24(1).
https://doi.org/10.15252/embr.202256033
10. Kolawole, T. O., Mustapha, A. Y., Mbata, A. O., Tomoh, B. O., Forkuo, A. Y., & Kelvin-Agwu, M. C. (2023). Innovative strategies for reducing antimicrobial resistance: A review of global policy and practice. Journal of Frontiers in Multidisciplinary Research, 4(1), 25-38.
https://doi.org/10.54660/.ijfmr.2023.4.1.25-38
11. Alam, M. M., Islam, M., Wahab, A., & Billah, M. (2019). Antimicrobial resistance crisis and combating approaches. Journal of Medicine, 20(1), 38-45.
https://doi.org/10.3329/jom.v20i1.38842
12. Cantón, R., Horcajada, J. P., Oliver, A., Garbajosa, P. R., & Vila, J. (2013). Inappropriate use of antibiotics in hospitals: The complex relationship between antibiotic use and antimicrobial resistance. Enfermedades Infecciosas y Microbiología Clínica, 31, 3-11.
https://doi.org/10.1016/s0213-005x(13)70126-5
13. Merddy, O., Rahul, A., Gupta, S., Martin, J., Taylor, S., & Wilson, M. (2024). Pharmaceutical innovations and stewardship programs in combating antimicrobial resistance. Journal of Advances in Medicine and Pharmaceutical Sciences, 3(1), 38-44.
https://doi.org/10.36079/lamintang.jamaps-0301.736
14. Ahmed, S., Ahmed, M. Z., Rafique, S., Almasoudi, S. E., Shah, M., Jalil, N. A., & Ojha, S. C. (2023). Recent approaches for downplaying antibiotic resistance: Molecular mechanisms. BioMed Research International, 2023(1).
https://doi.org/10.1155/2023/5250040
15. Abel, K., Agnew, E., Amos, J., Armstrong, N., Armstrong-James, D., Ashfield, T., Aston, S., Baillie, J. K., Baldwin, S., Barlow, G., Bartle, V., Bielicki, J., Brown, C., Carrol, E., Clements, M., Cooke, G., Dane, A., Dark, P., Day, J., … Hope, W. (2024). System-wide approaches to antimicrobial therapy and antimicrobial resistance in the UK: The AMR-X framework. The Lancet Microbe, 5(5), e500-e507.
https://doi.org/10.1016/s2666-5247(24)00003-x
16. Krishnaprasad, V. H., & Kumar, S. (2024). Antimicrobial resistance: An ultimate challenge for 21st century scientists, healthcare professionals, and policymakers to save future generations. Journal of Medicinal Chemistry, 67(18), 15927-15930.
https://doi.org/10.1021/acs.jmedchem.4c02002
17. Alhassan, M. Y., Kabara, M. K., Ahmad, A. A., Abdulsalam, J., & Habib, H. I. (2025). Revisiting antibiotic stewardship: Veterinary contributions to combating antimicrobial resistance globally. Bulletin of the National Research Centre, 49(1).
https://doi.org/10.1186/s42269-025-01317-3
18. Ohashi, T., Nagashima, M., Kawai, N., Ohmagari, N., & Tateda, K. (2022). A narrative review on drug development for the management of antimicrobial- resistant infection crisis in Japan: The past, present, and future. Expert Review of Anti-infective Therapy, 20(12), 1603-1614.
https://doi.org/10.1080/14787210.2022.2142118
19. Ferraz, M. P. (2024). Antimicrobial resistance: The impact from and on society according to one health approach. Societies, 14(9), 187.
https://doi.org/10.3390/soc14090187
20. Tan, H. M., Lall, A. C., Keppo, J., & Chen, S. L. (2023). Evaluation of a new antiresistic strategy to manage antibiotic resistance. Journal of Global Antimicrobial Resistance, 33, 368-375.
https://doi.org/10.1016/j.jgar.2023.03.006
21. Kasimanickam, V., Kasimanickam, M., & Kasimanickam, R. (2021). Antibiotics use in food animal production: Escalation of antimicrobial resistance: Where are we now in combating AMR? Medical Sciences, 9(1), 14.
https://doi.org/10.3390/medsci9010014
22. Rizk, N. A., Moghnieh, R., Haddad, N., Rebeiz, M., Zeenny, R. M., Hindy, J., Orlando, G., & Kanj, S. S. (2021). Challenges to antimicrobial stewardship in the countries of the Arab League: Concerns of worsening resistance during the COVID-19 pandemic and proposed solutions. Antibiotics, 10(11), 1320.
https://doi.org/10.3390/antibiotics10111320
23. Jose, K. R. (2022). Antimicrobial resistance: Will there be a solution? JIVA, 20(3), 07-24.
https://doi.org/10.55296/jiva/20.3.2022.7-24
24. Mullins, L. P., Mason, E., Winter, K., & Sadarangani, M. (2023). Vaccination is an integral strategy to combat antimicrobial resistance. PLOS Pathogens, 19(6), e1011379.
https://doi.org/10.1371/journal.ppat.1011379
25. Lesho, E. P., & Laguio-Vila, M. (2019). The slow-motion catastrophe of antimicrobial resistance and practical interventions for all prescribers. Mayo Clinic Proceedings, 94(6), 1040-1047.
https://doi.org/10.1016/j.mayocp.2018.11.005
26. Helmy, Y. A., Taha-Abdelaziz, K., Hawwas, H. A., Ghosh, S., AlKafaas, S. S., Moawad, M. M., Saied, E. M., Kassem, I. I., & Mawad, A. M. (2023). Antimicrobial resistance and recent alternatives to antibiotics for the control of bacterial pathogens with an emphasis on foodborne pathogens. Antibiotics, 12(2), 274.
https://doi.org/10.3390/antibiotics12020274
27. McArthur, A. G., & Tsang, K. K. (2016). Antimicrobial resistance surveillance in the genomic age. Annals of the New York Academy of Sciences, 1388(1), 78-91.
https://doi.org/10.1111/nyas.13289
28. Mohakud, N. K., & Tetarave, S. K. (2025). Combating antimicrobial resistance using artificial intelligence/machine learning methods. Journal of Integrative Medicine and Research, 3(1), 1-3.
https://doi.org/10.4103/jimr.jimr_82_24
29. Pai, M., Gandra, S., Thapa, P., & Carmona, S. (2025). Tackling antimicrobial resistance: Recognising the proposed five blind spots can accelerate progress. The Lancet Microbe, 6(2), 100968.
https://doi.org/10.1016/j.lanmic.2024.100968
30. Lau, W. Y., Taylor, P. K., Brinkman, F. S., & Lee, A. H. (2023). Pathogen-associated gene discovery workflows for novel antivirulence therapeutic development. eBioMedicine, 88, 104429.
https://doi.org/10.1016/j.ebiom.2022.104429
31. Sakagianni, A., Koufopoulou, C., Feretzakis, G., Kalles, D., Verykios, V. S., Myrianthefs, P., & Fildisis, G. (2023). Using machine learning to predict antimicrobial Resistance―A literature review. Antibiotics, 12(3), 452.
https://doi.org/10.3390/antibiotics12030452
32. Buchy, P., Ascioglu, S., Buisson, Y., Datta, S., Nissen, M., Tambyah, P. A., & Vong, S. (2020). Impact of vaccines on antimicrobial resistance. International Journal of Infectious Diseases, 90, 188-196.
https://doi.org/10.1016/j.ijid.2019.10.005
33. Nelson, D. W., Moore, J. E., & Rao, J. R. (2019). Antimicrobial resistance (AMR): Significance to food quality and safety. Food Quality and Safety, 3(1), 15-22.
https://doi.org/10.1093/fqsafe/fyz003
34. Mahizhchi, E., Sivakumar, D., & Jayaraman, M. (2024). Antimicrobial resistance: Techniques to fight AMR in bacteria – A review. Journal of Pure and Applied Microbiology, 18(1), 16-28.
https://doi.org/10.22207/jpam.18.1.53
35. Yoo, J. (2025). Antimicrobial resistance – The ‘Real’ pandemic we are unaware of, yet nearby. Journal of Korean Medical Science, 40(19).
https://doi.org/10.3346/jkms.2025.40.e161
36. Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2015). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857-2876.
https://doi.org/10.1080/10408398.2015.1077192
37. Tran, M., Nguyen, N. Q., & Pham, H. T. (2022). A new hope in the fight against antimicrobial resistance with artificial intelligence. Infection and Drug Resistance, 15, 2685-2688.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
