Evaluation of Herbal Samples Constituents by Applying Phytochemical Screening Approach and Fourier Transform Infrared Spectroscopy
DOI:
https://doi.org/10.70749/ijbr.v3i10.2135Keywords:
Fourier transform infrared spectroscopy, Phytochemical screening, Herbal medicineAbstract
Herbal medicines are continuously contributing a significant role in the prophylaxis and healing of diverse ailments worldwide. When analyzing the chemical constitution of herbal medicines, the important challenge is their complex chemical composition. Fourier transform spectroscopy and phytochemical screening are two significant analytical tools to determine the chemical constitution of a sample. The present research work is focused on comparing the data obtained by these two techniques to assess the type of constituents present in herbal samples. Cichorium intybus and Lepidium sativum seeds were procured from reliable herbal shops in Karachi and were identified, authenticated, powdered, extracted, and then subjected to the standard procedures of qualitative phytochemical screening and Fourier transform infrared spectroscopy. Results obtained through these two analyses were compared and interpreted. Diverse peak intensities at different wavelengths have been observed in Fourier transform infrared (FT-IR) spectra of two herbal samples. Leading functional groups observed include carboxylic acids, phenols, aromatics, alkanes, alkenes, alkynes, alcohol, amines, amides, sulfate esters, ethers and alkyl halides while lipids, flavonoids, carbohydrates, proteins, alkaloids, triterpenes, tannins, phlobatannins, anthraquinones, saponins, and quinones were major primary and secondary metabolites detected in phytochemical screening. FTIR is an effective technique for the determination of the structure and composition of a herbal sample based on the vibrational properties of functional groups, whereas phytochemical screening is the primary and qualitative technique to detect primary and secondary metabolites in herbal samples. Comparison of results attained by these two techniques helps identify constituents and their intensities in different herbal samples.
Downloads
References
1. Ali, G., & Neda, G. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of medicinal plants research, 5(31), 6697-6703.
https://doi.org/10.5897/jmpr11.1404
2. Sytar, O., & Smetanska, I. (2022). Special Issue “Bioactive Compounds from Natural Sources (2020, 2021)”. Molecules, 27(6), 1929.
https://doi.org/10.3390/molecules27061929
3. Coates, J. (2000). Interpretation of infrared spectra, a practical approach, Coates consulting Newtown USA,1-23.
https://doi.org/10.1002/9780470027318.a5606
4. Berthomieu C., Hienerwadel R. (2009). Fourier transform infrared (FTIR) spectroscopy, Photosynth Res 101:157–170
https://doi.org/10.1007/s11120-009-9439-x
5. Pant, D. R., Pant, N. D., Saru, D. B., Yadav, U. N., & Khanal, D. P. (2017). Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. Journal of intercultural ethnopharmacology, 6(2), 170.
https://doi.org/10.5455/jice.20170403094055
6. Bhardwaj, K., & Dubey, W. (2019). Quantitative analysis of primary and secondary metabolites of ethanol seed extract of Origanum majorana (Marjoram). Journal of Pharmacognosy and Phytochemistry, 8(1), 1251-1255.
7. Sharma, T., Pandey, B., Shrestha, B. K., Koju, G. M., Thusa, R., & Karki, N. (2020). Phytochemical screening of medicinal plants and study of the effect of phytoconstituents in seed germination. Tribhuvan University Journal, 35(2), 1-11.
https://doi.org/10.3126/tuj.v35i2.36183
8. Srivastava, P., Singh, M., & Chaturvedi, R. (2020). Herbal medicine and biotechnology for the benefit of human health. In Animal Biotechnology (pp. 613-629). Academic Press.
https://doi.org/10.1016/b978-0-12-811710-1.00028-8
9. Ahmad, R., Mujeeb, M., Anwar, F., Husain, A., Ahmad, A., & Sharma, S. (2015). Pharmacognostical and phytochemical analysis of Lepidium sativum L. seeds. International Current Pharmaceutical Journal, 4(10), 442-446.
https://doi.org/10.3329/icpj.v4i10.24913
10. Chandrashekar, K., Santanu, S., & Prasanna, K. S. (2010). Phytochemical studies of aerial parts of the plant Leucas lavandulaefolia. Der Pharma Chemica, 2(5):434-437.
11. UC, R., & Nair, V. M. G. (2013). Phytochemical analysis of successive re-extracts of the leaves of Moringa oleifera Lam. Int. J. Pharm. Pharm. Sci., 5, 629-634.
12. Geetha, T. S., & Geetha, N. (2014). Phytochemical screening, quantitative analysis of primary and secondary metabolites of Cymbopogan citratus (DC) Stapf. leaves from Kodaikanal hills, Tamilnadu. International Journal of Pharmtech Research, 6(2), 521-529.
13. Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3 (12), 10-14.
14. Sama, K., Xavier, V., & Raja, A. (2011). Preliminary phytochemical screening of root bark of Delonix regia [J]. Int J Pharm Life Sci, 2(10), 42-43.
15. Ajiboye, B. O., Ibukun, E. O., Edobor, G., Ojo, A. O., & Onikanni, S. A. (2013). Qualitative and quantitative analysis of phytochemicals in Senecio biafrae leaf. International Journal of Inventions in Pharmaceutical Sciences, 1(5), 428-432.
16. Ayeni, E. A., Abubakar, A., Ibrahim, G., Atinga, V., & Muhammad, Z. (2018). Phytochemical, nutraceutical and antioxidant studies of the aerial parts of Daucus carota L. (Apiaceae). Journal of Herbmed Pharmacology, 7(2), 68-73.
https://doi.org/10.15171/jhp.2018.12
17. Celino, A., Gonçalves, O., Jacquemin, F., & Freour, S. (2014). Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy. Carbohydrate polymers, 101, 163-170.
https://doi.org/10.1016/j.carbpol.2013.09.023
18. Erb, M., & Kliebenstein, D. J. (2020). Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant physiology, 184(1), 39-52.
https://doi.org/10.1104/pp.20.00433
19. Chakraborty, D. S. (2016). Instrumentation of FTIR and its herbal applications. World J Pharm Pharmaceutical Sci, 5(3), 498-505.
20. Shabanian, M., Hajibeygi, M., & Raeisi, A. (2020). FTIR characterization of layered double hydroxides and modified layered double hydroxides. In Layered Double Hydroxide Polymer Nanocomposites (pp. 77-101). Woodhead Publishing.
https://doi.org/10.1016/b978-0-08-101903-0.00002-7
21. Fan, M., Dai, D., & Huang, B. (2012). Fourier transform infrared spectroscopy for natural fibres. Fourier transform-materials analysis, 3, 45-68.
22. Nalla, R., Pinge, R., Narwaria, M., & Chaudhury, B. (2018). Priority based functional group identification of organic molecules using machine learning. (pp. 201-209) In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data.
https://doi.org/10.1145/3152494.3152522
23. Deyl, Z., & Miksik, I. (1998). Carboxylic Acids. Journal of chromatography library, 60, 315-342.
https://doi.org/10.1016/s0301-4770(08)60305-x
24. Robert, J., Ouellette, R. J., & Rawn, J. D. (2014). Functional groups and their properties. Organic chemistry: structure, mechanism, and synthesis. (pp. 41-74) Elsevier.
https://doi.org/10.1016/b978-0-12-800780-8.00002-4
25. Gaebler, A., Penno, A., Kuerschner, L., & Thiele, C. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. Journal of Lipid Research, 57(10), 1934-1947.
https://doi.org/10.1194/jlr.d070565
26. Smith, B. C. (2017). An IR spectral interpretation potpourri: carbohydrates and alkynes. 32 (7), 18-24.
https://doi.org/10.56530/spectroscopy.fi6379n1
27. Gan, R. Y., Chan, C. L., Yang, Q. Q., Li, H. B., Zhang, D., Ge, Y. Y., & Corke, H. (2019). Bioactive compounds and beneficial functions of sprouted grains. In Sprouted grains (pp. 191-246). AACC International Press.
https://doi.org/10.1016/b978-0-12-811525-1.00009-9
28. Perveen, S., & Al-Taweel, A. M. (2017). Phenolic compounds from the natural sources and their cytotoxicity. Phenolic Compounds: Natural Sources, Importance and Applications, IntechOpen, 29-60.
29. Sabatini, N. (2010). A Comparison of the Volatile Compounds, in Spanish-style, Greekstyle and Castelvetrano-style Green Olives of the Nocellara del Belice Cultivar: Alcohols, Aldehydes, Ketones, Esters and Acids. In Olives and Olive Oil in Health and Disease Prevention (pp. 219-231). Academic Press
https://doi.org/10.1016/b978-0-12-374420-3.00024-3
30. Hellwig, P. (2015). Infrared spectroscopic markers of quinones in proteins from the respiratory chain. Biochimica Biophysica Acta (BBA)-Bioenergetics, 1847(1), 126- 133.
https://doi.org/10.1016/j.bbabio.2014.07.004
31. Josien, M. L., Fuson, N., Lebas, J. M., & Gregory, T. M. (1953). An infrared spectroscopic study of the carbonyl stretching frequency in a group of ortho and para quinones. The Journal of Chemical Physics, 21(2), 331-340.
https://doi.org/10.1063/1.1698881
32. Moghaddam, M., & Mehdizadeh, L. (2017). Chemistry of essential oils and factors influencing their constituents. In Soft chemistry and food fermentation (pp. 379- 419). Academic Press.
https://doi.org/10.1016/b978-0-12-811412-4.00013-8
33. Engvild, K. C. (1986). Chlorine-containing natural compounds in higher plants. Phytochemistry, 25(4), 781-791.
https://doi.org/10.1016/0031-9422(86)80002-4
34. Gribble, G. W. (1996). Naturally occuring organohalogen compounds—a comprehensive survery. In Progress in the Chemistry of Organic Natural Products (pp. 1-423). Springer, Vienna.
https://doi.org/10.1007/978-3-7091-6887-5_1
35. El-Sayed, Y. S., Lebda, M. A., Hassinin, M., & Neoman, S. A. (2015). Chicory (Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl 4-induced hepatotoxicity. Plos one, 10(3), e0121549.
https://doi.org/10.1371/journal.pone.0121549
36. Nwafor, I. C., Shale, K., & Achilonu, M. C. (2017). Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. The Scientific World Journal, 2017, 1-11.
https://doi.org/10.1155/2017/7343928
37. Smith, B. (2016). The infrared spectroscopy of alkenes. Organoboulder.com
(https://orgchemboulder.com/Spectroscopy/irtutor/alkhalidesir.shtml)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
