Comparative Analysis of Human and Chicken Lymphocytes DNA Damage Exposed to Carbofuran
DOI:
https://doi.org/10.70749/ijbr.v3i9.2198Keywords:
Human, Chicken, Carbofuran, Genotoxicity, Comet AssayAbstract
Carbofuran, a highly toxic N-methyl carbamate insecticide banned in many regions due to ecological and health risks, exerts genotoxic effects through oxidative stress and DNA damage. This study evaluated and compared its time-dependent genotoxicity on human and chicken lymphocytes using the Alkaline Comet Assay, exposing isolated peripheral blood lymphocytes from both species to 50 µM carbofuran for 1 or 2 hours and quantifying DNA strand breaks using CASP software. Results revealed moderate DNA damage in human lymphocytes after 1 hour (Tail DNA% = 12.65%, TM = 0.51, OTM = 2.32), increasing moderately after 2 hours (Tail DNA% = 18.92%, TM = 1.14, OTM = 2.40). In stark contrast, chicken lymphocytes exhibited high DNA damage after 1 hour (Tail DNA% = 40.17%, TM = 17.68, OTM = 13.11), which significantly increased after 2 hours (Tail DNA% = 60.08%, TM = 29.44, OTM = 18.94). These findings demonstrate carbofuraninduced time-dependent DNA damage in both species but crucially reveal significantly higher susceptibility in chicken lymphocytes compared to human lymphocytes at the same concentration. This heightened vulnerability underscores carbofuran's extreme toxicity to birds and highlights the value of chicken lymphocytes as a sensitive model for Eco toxicological genotoxicity assessment.
Downloads
References
1. Akgül, S. U., Temurhan, S., Çınar, Ç. K., Çiftçi, H. Ş., Bayraktar, A., Demir, E., . . . Oğuz, F. S. (2024). Do Xenogeneic Anti-HLA-A3 Antibody Cause AntibodyMediated Rejection in Kidney Transplant? Turkish Journal of Nephrology, 33(1), 102-109. https://doi.org/10.5152/turkjnephrol.2023.22486
2. Braspaiboon, S., & Laokuldilok, T. (2024). High hydrostatic pressure: Influences on allergenicity, bioactivities, and structural and functional properties of proteins from diverse food sources. Foods, 13(6), 922. https://doi.org/10.3390/foods13060922
3. Kumagai, S., Koyama, S., Itahashi, K., Tanegashima, T., Lin, Y.-t., Togashi, Y., . . . Kono, H. (2022). Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer cell, 40(2), 201-218. e209. https://doi.org/10.1016/j.ccell.2022.01.001
4. Molnar, V., Matišić, V., Kodvanj, I., Bjelica, R., Jeleč, Ž., Hudetz, D., . . . Vidović, D. (2021). Cytokines and chemokines involved in osteoarthritis pathogenesis. International journal of molecular sciences, 22(17), 9208. https://doi.org/10.3390/ijms22179208
5. Park, M. D., Reyes-Torres, I., LeBerichel, J., Hamon, P., LaMarche, N. M., Hegde, S., . . . Magen, A. (2023). TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nature immunology, 24(5), 792-801. https://doi.org/10.1038/s41590-023-01475-4
6. Sharma, S. (2014). Natural killer cells and regulatory T cells in early pregnancy loss. International Journal of Developmental Biology, 58(2-4), 219-229.
https://doi.org/10.1387/ijdb.140109ss
7. Shin, B., Chang, S. J., MacNabb, B. W., & Rothenberg, E. V. (2024). Transcriptional network dynamics in early T cell development. Journal of Experimental Medicine, 221(10), e20230893. https://doi.org/10.1084/jem.20230893
8. Suan, D., Kräutler, N. J., Maag, J. L., Butt, D., Bourne, K., Hermes, J. R., . . . Elliott, M. (2017). CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light-zone location and predominant low antigen affinity. Immunity, 47(6), 11421153. e1144. https://doi.org/10.1016/j.immuni.2017.11.022
9. Thakur, A., Mikkelsen, H., & Jungersen, G. (2019). Intracellular pathogens: host immunity and microbial persistence strategies. Journal of immunology research, 2019(1), 1356540. 10. Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., & Chen, S. (2020). Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 259, 127419. https://doi.org/10.1155/2019/1356540
10. Kempuraj, D., Zhang, E., Gupta, S., Gupta, R. C., Sinha, N. R., & Mohan, R. R. (2023). Carbofuran pesticide toxicity to the eye. Experimental eye research, 227, 109355. https://doi.org/10.1016/j.exer.2022.109355
11. Abd El-Rahman, H. A., & Omar, A. R. (2022). Ameliorative effect of avocado oil against lufenuron induced testicular damage and infertility in male rats. Andrologia, 54(11), e14580. https://doi.org/10.1111/and.14580
12. Collins, A., Møller, P., Gajski, G., Vodenková, S., Abdulwahed, A., Anderson, D., ... & Azqueta, A. (2023). Measuring DNA modifications with the comet assay: a compendium of protocols. Nature protocols, 18(3), 929-989. https://doi.org/10.1038/s41596-022-00754-y
13. Xiang, Q., Yan, X., Shi, W., Li, H., & Zhou, K. (2023). Early gut microbiota intervention in premature infants: Application perspectives. Journal of Advanced Research, 51, 59-72. https://doi.org/10.1016/j.jare.2022.11.004
14. Yu, Y., Liu, S., Yang, L., Song, P., Liu, Z., Liu, X., . . . Dong, Q. (2024). Roles of reactive oxygen species in inflammation and cancer. MedComm, 5(4), e519. https://doi.org/10.1002/mco2.519
15. Zhang, J., Xie, B., & Hashimoto, K. (2020). Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, behavior, and immunity, 87, 59-73. https://doi.org/10.1016/j.bbi.2020.04.046
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
