The Oncogenic Role of miR-21 in Cancer Progression: A Molecular Review
DOI:
https://doi.org/10.70749/ijbr.v3i9.2253Keywords:
miR-21, microRNA, PTEN, PDCD4, Exosome, Tumor Microenvironment, EMT, Biomarker, Anti-miR Therapy.Abstract
Small non-coding RNAs known as microRNAs (miRNAs) are essential for controlling genes, and miR-21 has been shown to be a strong carcinogen in a variety of malignancies. The mechanisms of miR-21 are described in detail in this review, including the suppression of tumor suppressors like PTEN and PDCD4, the activation of pathways like PI3K/AKT, and the encouragement of aggressive phenotypes like invasion, proliferation, and resistance to treatment. Through exosomal transfer, miR-21 modifies the tumor microenvironment (TME), promoting stromal remodeling and immune suppression. Its potential as a diagnostic and prognostic biomarker is highlighted by its detectability in circulation and consistent upregulation in cancers. Anti-miR oligonucleotides and nanoparticle delivery are two therapeutic approaches that exhibit preclinical promise but struggle with specificity and clinical translation. The functions of miR-21 are summarized in this review, with a focus on novel delivery methods and standardized assays as the means of achieving its full therapeutic potential.
Downloads
References
1. Ogawa, H., Nakashiro, K., Tokuzen, N., Kuribayashi, N., Goda, H., & Uchida, D. (2020). Microrna‐361‐3p is a potent therapeutic target for oral squamous cell carcinoma. Cancer Science, 111(5), 1645-1651.
https://doi.org/10.1111/cas.14359
2. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., & Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415-419.
https://doi.org/10.1038/nature01957
3. Volinia, S., Calin, G. A., Liu, C., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., Prueitt, R. L., Yanaihara, N., Lanza, G., Scarpa, A., Vecchione, A., Negrini, M., Harris, C. C., & Croce, C. M. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences, 103(7), 2257-2261.
https://doi.org/10.1073/pnas.0510565103
4. Li, Z., Zhang, H., Chen, Z., Wu, G., Guo, W., & Li, Y. (2025). MicroRNA 21: A potential therapeutic target in lung cancer (Review). International Journal of Oncology, 67(2).
https://doi.org/10.3892/ijo.2025.5773
5. Zhang, Y., Yang, X., Zhang, S., Huang, Q., Liu, S., Qiu, L., Wei, M., Deng, X., Meng, W., Chen, H., Zhang, Y., Han, J., & Wang, Z. (2025). Microrna-6084 orchestrates angiogenesis and liver metastasis in colorectal cancer via extracellular vesicles. JCI Insight, 10(14).
https://doi.org/10.1172/jci.insight.189503
6. Wang, W., Li, X., Liu, C., Zhang, X., Wu, Y., Diao, M., Tan, S., Huang, S., Cheng, Y., & You, T. (2022). Microrna-21 as a diagnostic and prognostic biomarker of lung cancer: A systematic review and meta-analysis. Bioscience Reports, 42(5).
https://doi.org/10.1042/bsr20211653
7. Tian, Y., Zhang, M., Liu, L., Wang, Z., Liu, B., Huang, Y., Wang, X., Ling, Y., Wang, F., Feng, X., & Tu, Y. (2024). Exploring non-coding RNA mechanisms in hepatocellular carcinoma: Implications for therapy and prognosis. Frontiers in Immunology, 15.
https://doi.org/10.3389/fimmu.2024.1400744
8. Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., & Allgayer, H. (2007). Microrna-21 (Mir-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128-2136.
https://doi.org/10.1038/sj.onc.1210856
9. Qi, Y., Cui, Q., Zhang, W., Yao, R., Xu, D., & Zhang, F. (2020). Long Non-Coding RNA GAS5 Targeting microRNA-21 to Suppress the Invasion and Epithelial–Mesenchymal Transition of Uveal Melanoma. Cancer Manag Res. Cancer Management and Research, 12, 12259-12267.
https://doi.org/10.2147/cmar.s260866
10. SHEN, X., HAN, Y., YANG, B., CUI, X., & KIM, N. (2009). Hyperglycemia reduces mitochondrial content and glucose transporter expression in mouse embryos developing in vitro. Journal of Reproduction and Development, 55(5), 534-541.
https://doi.org/10.1262/jrd.20231
11. Meng, F., Henson, R., Wehbe–Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). Microrna-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133(2), 647-658.
https://doi.org/10.1053/j.gastro.2007.05.022
12. Gabriely, G., Wurdinger, T., Kesari, S., Esau, C. C., Burchard, J., Linsley, P. S., & Krichevsky, A. M. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix Metalloproteinase regulators. Molecular and Cellular Biology, 28(17), 5369-5380.
https://doi.org/10.1128/mcb.00479-08
13. Bertoli, G., Cava, C., & Castiglioni, I. (2015). MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics, 5(10), 1122-1143.
https://doi.org/10.7150/thno.11543
14. Xu, C., Xiao, M., Li, X., Xin, L., Song, J., Zhan, Q., Wang, C., Zhang, Q., Yuan, X., Tan, Y., & Fang, C. (2022). Origin, activation, and targeted therapy of glioma-associated macrophages. Frontiers in Immunology, 13.
https://doi.org/10.3389/fimmu.2022.974996
15. Nicoletti, A., Negri, M., Paratore, M., Vitale, F., Ainora, M. E., Nista, E. C., Gasbarrini, A., Zocco, M. A., & Zileri Dal Verme, L. (2023). Diagnostic and prognostic role of Extracellular vesicles in pancreatic cancer: Current evidence and future perspectives. International Journal of Molecular Sciences, 24(1), 885.
https://doi.org/10.3390/ijms24010885
16. Cheng, H., Li, X., Zhong, Y., Yu, X., Zhou, G., & Zou, Y. (2025). Evolving tumor microenvironment: Driving cancer initiation and progression in cardiovascular diseases. iScience, 28(9), 113387.
https://doi.org/10.1016/j.isci.2025.113387
17. Zeng, J., & Zeng, X. X. (2023). Correction: Systems medicine for precise targeting of glioblastoma. Molecular Biotechnology, 65(12), 2119-2119.
https://doi.org/10.1007/s12033-023-00716-z
18. Tsukamoto, M., Iinuma, H., Yagi, T., Matsuda, K., & Hashiguchi, Y. (2017). Circulating Exosomal microrna-21 as a biomarker in each tumor stage of colorectal cancer. Oncology, 92(6), 360-370.
https://doi.org/10.1159/000463387
19. Li, J., Lu, S., Chen, F., & Zhu, H. (2024). Unveiling the hidden role of extracellular vesicles in brain metastases: A comprehensive review. Frontiers in Immunology, 15.
https://doi.org/10.3389/fimmu.2024.1388574
20. Martino, M. T., Tagliaferri, P., & Tassone, P. (2025). MicroRNA in cancer therapy: Breakthroughs and challenges in early clinical applications. Journal of Experimental & Clinical Cancer Research, 44(1).
https://doi.org/10.1186/s13046-025-03391-x
21. Powell, J. E., Lim, C. K., Krishnan, R., McCallister, T. X., Saporito-Magriña, C., Zeballos, M. A., McPheron, G. D., & Gaj, T. (2022). Targeted gene silencing in the nervous system with CRISPR-cas13. Science Advances, 8(3).
https://doi.org/10.1126/sciadv.abk2485
22. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611-622.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.