Roles of Physical Activity and Nutritional Patterns in Optimizing Cognitive Function, Enhancing Neuroplasticity, and Preventing Cognitive Decline across the Lifespan
DOI:
https://doi.org/10.70749/ijbr.v3i9.2293Keywords:
Physical Activity, Nutritional Patterns, Cognitive Function, Neuroplasticity, Cognitive DeclineAbstract
Modern neuroscience increasingly recognizes the critical roles of both diet and physical activity in promoting cognitive function and brain plasticity. While exercise has been widely acknowledged as a modulator of neurogenesis and synaptic function, nutritional patterns also significantly affect neurochemical balance, inflammatory processes, and neuronal integrity. There are multiple brain functions for example development and maintenance of brain functions, memory and learning process, the healing process of brain damage and environmental adaption, all depend completely on neuroplasticity. In this review, we examine the enormous potential of neuroplasticity in relation to several facets of brain function in both the setting of sickness and throughout life. We'll also go over how the aging brain changes and how important neuroplasticity is for preserving cognitive function as we age. This review consolidates recent evidence on the synergistic effects of diet and exercise in enhancing cognitive performance and structural brain plasticity. The combination of nutrition and exercise provides a potent remedy for mental well-being and aging longevity. We may develop a robust mind and give our lives more vitality and meaning by adopting an active lifestyle and practicing mindful eating. Drawing from human clinical trials, epidemiological data, and mechanistic animal studies, we explore the biological pathways involved, including neurotrophin regulation, oxidative stress modulation, and gut-brain interactions. The review article concludes by discussing translational implications and proposing integrated lifestyle strategies for lifelong cognitive health.
Downloads
References
1. Kolb, B., Mychasiuk, R., Muhammad, A., & Gibb, R. (2013). Brain plasticity in the developing brain. Progress in Brain Research, 35-64.
https://doi.org/10.1016/b978-0-444-63327-9.00005-9
2. Gómez-Pinilla, F. (2008). Brain foods: The effects of nutrients on brain function. Nature Reviews Neuroscience, 9(7), 568-578.
https://doi.org/10.1038/nrn2421
3. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022.
https://doi.org/10.1073/pnas.1015950108
4. Singh, B., Parsaik, A. K., Mielke, M. M., Erwin, P. J., Knopman, D. S., Petersen, R. C., & Roberts, R. O. (2014). Association of Mediterranean diet with mild cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis. Journal of Alzheimer's Disease, 39(2), 271-282.
https://doi.org/10.3233/jad-130830
5. Cotman, C. W., Berchtold, N. C., & Christie, L. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464-472.
https://doi.org/10.1016/j.tins.2007.06.011
6. Mattson, M. P. (2005). Energy intake, meal frequency, and health: A neurobiological perspective. Annual Review of Nutrition, 25(1), 237-260.
https://doi.org/10.1146/annurev.nutr.25.050304.09252
7. Svensson, M., Lexell, J., & Deierborg, T. (2014). Effects of physical exercise on Neuroinflammation, Neuroplasticity, Neurodegeneration, and behavior. Neurorehabilitation and Neural Repair, 29(6), 577-589. https://doi.org/10.1177/1545968314562108
8. Manger, S. (2019). Lifestyle interventions for mental health. Australian Journal of General Practice, 48(10), 670-673. https://doi.org/10.31128/ajgp-06-19-4964
9. Koronyo-Hamaoui, M., Gaire, B. P., Frautschy, S. A., & Alvarez, J. I. (2022). Editorial: Role of inflammation in neurodegenerative diseases. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.958487
10. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.
https://doi.org/10.1371/journal.pmed.1000097
11. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7), e1000100.
https://doi.org/10.1371/journal.pmed.1000100
12. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.
https://doi.org/10.1136/bmj.n71
13. Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-scr): Checklist and explanation. Annals of Internal Medicine, 169(7), 467-473.
https://doi.org/10.7326/m18-0850
14. Yehuda, S., Rabinovitz, S., & Mostofsky, D. (2005). Essential fatty acids and the brain: From infancy to aging. Neurobiology of Aging, 26(1), 98-102.
https://doi.org/10.1016/j.neurobiolaging.2005.09.013
15. Lauritzen, L. (2001). The essentiality of long chain N-3 fatty acids in relation to development and function of the brain and retina. Progress in Lipid Research, 40(1-2), 1-94.
https://doi.org/10.1016/s0163-7827(00)00017-5
16. Sinn, N., & Bryan, J. (2007). Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD. Journal of Developmental & Behavioral Pediatrics, 28(2), 82-91.
https://doi.org/10.1097/01.dbp.0000267558.88457.a5
17. Kennedy, D. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8(2), 68.
https://doi.org/10.3390/nu8020068
18. Moore, M. E., et al. (2012). Vitamin D and brain function. Neurology, 79(17), 1711–1712.
19. Barbagallo, M., & Dominguez, L. (2010). Magnesium and aging. Current Pharmaceutical Design, 16(7), 832-839.
https://doi.org/10.2174/138161210790883679
20. Scarmeas, N., Stern, Y., Tang, M., Mayeux, R., & Luchsinger, J. A. (2006). Mediterranean diet and risk for Alzheimer's disease. Annals of Neurology, 59(6), 912-921.
https://doi.org/10.1002/ana.20854
21. McGrattan, A. M., McGuinness, B., McKinley, M. C., Kee, F., Passmore, P., Woodside, J. V., & McEvoy, C. T. (2019). Diet and inflammation in cognitive ageing and Alzheimer’s disease. Current Nutrition Reports, 8(2), 53-65.
https://doi.org/10.1007/s13668-019-0271-4
22. Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Bennett, D. A., & Aggarwal, N. T. (2015). MIND diet associated with reduced incidence of Alzheimer's disease. Alzheimer's & Dementia, 11(9), 1007-1014.
https://doi.org/10.1016/j.jalz.2014.11.009
23. Augusto-Oliveira, M., Arrifano, G. P., Leal-Nazaré, C. G., Santos-Sacramento, L., Lopes-Araújo, A., Royes, L. F., & Crespo-Lopez, M. E. (2023). Exercise reshapes the brain: Molecular, cellular, and structural changes associated with cognitive improvements. Molecular Neurobiology, 60(12), 6950-6974. https://doi.org/10.1007/s12035-023-03492-8
24. Voss, M. W., Vivar, C., Kramer, A. F., & Van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17(10), 525-544.
https://doi.org/10.1016/j.tics.2013.08.001
25. Chaddock-Heyman, L., Erickson, K. I., Kienzler, C., Drollette, E. S., Raine, L. B., Kao, S., Bensken, J., Weisshappel, R., Castelli, D. M., Hillman, C. H., & Kramer, A. F. (2018). Physical activity increases white matter microstructure in children. Frontiers in Neuroscience, 12.
https://doi.org/10.3389/fnins.2018.00950
26. Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian Journal of Medicine & Science in Sports, 25(S3), 1-72.
https://doi.org/10.1111/sms.12581
27. Wrann, C., White, J., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., Lin, J., Greenberg, M., & Spiegelman, B. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, 18(5), 649-659.
https://doi.org/10.1016/j.cmet.2013.09.008
28. Neeper, S. A., Góauctemez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373(6510), 109-109.
https://doi.org/10.1038/373109a0
29. Kashif, M., Fatima Zaman, Uzman, M. H., Tehreem Shabbir, Nadeem Ul Hassan Khan, Sania Atta, Shiraz, S., Muhammad Ali Zahid, & Atif Munir. (2024). Prevalence of hepatitis C in liver cirrhosis patients. Journal of Health and Rehabilitation Research, 4(3), 1-4.
https://doi.org/10.61919/jhrr.v4i3.1403
30. Bula, C. (2016). Physical activity and cognitive function in older adults. Swiss Sports Exerc. Med, 64, 14-18.
31. Zaurez Afshar, M. M., & Shah, M. H. (2025). Leveraging porter's diamond model: Public sector insights. The Critical Review of Social Sciences Studies, 3(2), 2255-2271.
https://doi.org/10.59075/kkteax93
32. Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., Bäckman, L., Hänninen, T., Jula, A., Laatikainen, T., Lindström, J., Mangialasche, F., Paajanen, T., Pajala, S., Peltonen, M., Rauramaa, R., Stigsdotter-Neely, A., Strandberg, T., Tuomilehto, J., … Kivipelto, M. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. The Lancet, 385(9984), 2255-2263.
https://doi.org/10.1016/s0140-6736(15)60461-5
33. Hasan, M. A., Mazumder, M. T. R., Motari, M. C., Shourov, M. S. H., Sarkar, M., & Toma, T. A. (2025). Assessing the effectiveness of AI chatbots in reducing no-shows and improving patient satisfaction in U.S. primary and specialized health care. AVE Trends in Intelligent Health Letters, 2(1), 1–15. https://www.avepubs.com/user/journals/article_details/ATIHL/117
34. Radak, Z., Chung, H. Y., Koltai, E., Taylor, A. W., & Goto, S. (2008). Exercise, oxidative stress and hormesis. Ageing Research Reviews, 7(1), 34-42.
https://doi.org/10.1016/j.arr.2007.04.004
35. Nazir, Q. U. A. (2023). AI-Powered Radiology: Innovations and Challenges in Medical Imaging. Journal of Engineering and Computational Intelligence Review, 1(1), 7-13.
https://jecir.com/index.php/jecir/article/view/14
36. Rahman, S., Rashid, S., Mehwish, Hussain, Khan, Z. A., Patowary, A. H., & Munir, A. (2024). Factors influencing the adoption of antibody-drug conjugates in oncology: A statistical study. Indus Journal of Bioscience Research, 2(2), 822-835.
https://doi.org/10.70749/ijbr.v2i02.287
37. Milgram, N., Head, E., Zicker, S., Ikeda-Douglas, C., Murphey, H., Muggenburg, B., Siwak, C., Tapp, D., & Cotman, C. (2005). Learning ability in aged beagle dogs is preserved by behavioral enrichment and dietary fortification: A two-year longitudinal study. Neurobiology of Aging, 26(1), 77-90.
https://doi.org/10.1016/j.neurobiolaging.2004.02.014
38. Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children. Medicine & Science in Sports & Exercise, 48(6), 1197-1222.
https://doi.org/10.1249/mss.0000000000000901
39. Taras, H. (2005). Nutrition and student performance at school. Journal of School Health, 75(6), 199-213. https://doi.org/10.1111/j.1746-1561.2005.tb06674.x
40. Ali, S., Rubab, T. E., & Mushtaq, W. (2025). Investigating the role of early nutritional interventions in shaping long-term pediatric health outcomes: A multidisciplinary approach to growth and development. Journal of Health, Wellness and Community Research, e136.
https://doi.org/10.61919/7han6v98
41. Santos-Lozano, A., Pareja-Galeano, H., Sanchis-Gomar, F., Quindós-Rubial, M., Fiuza-Luces, C., Cristi-Montero, C., Emanuele, E., Garatachea, N., & Lucia, A. (2016). Physical activity and Alzheimer disease: A protective association. Mayo Clinic Proceedings, 91(8), 999-1020. https://doi.org/10.1016/j.mayocp.2016.04.024
42. Clare, L., & Woods, B. (2003). Cognitive rehabilitation and cognitive training for early-stage Alzheimer's disease and vascular dementia. Cochrane Database of Systematic Reviews.
https://doi.org/10.1002/14651858.cd003260
43. Scarmeas, N., Anastasiou, C. A., & Yannakoulia, M. (2018). Nutrition and prevention of cognitive impairment. The Lancet Neurology, 17(11), 1006-1015. https://doi.org/10.1016/s1474-4422(18)30338-7
44. Blondell, S. J., Hammersley-Mather, R., & Veerman, J. L. (2014). Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health, 14(1). https://doi.org/10.1186/1471-2458-14-510
45. Khan, M. B., Ali, S., Hussain, S., Akhtar, A., Habib, T. H., Shah, M. A., Hasan, N., Ali, M., Khan, D., Farooq Wahab, Q. M., Shafiq, S. F., Debnath, A., & Ul Haq, F. (2025). Osteopetrosis: Insights and oversights—A case report and its literature review. Journal of Orthopaedics and Sports Medicine, 7(2).
https://doi.org/10.26502/josm.511500205
46. Kivipelto, M., Mangialasche, F., & Ngandu, T. (2018). Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nature Reviews Neurology, 14(11), 653-666.
https://doi.org/10.1038/s41582-018-0070-3
47. Cryan, J. F., O'Riordan, K. J., Cowan, C. S., Sandhu, K. V., Bastiaanssen, T. F., Boehme, M., ... & Dinan, T. G. (2019). The microbiota-gut-brain axis. Physiological reviews.
https://pubmed.ncbi.nlm.nih.gov/31460832
48. Phillips, C. (2017). Lifestyle modulators of Neuroplasticity: How physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plasticity, 2017, 1-22. https://doi.org/10.1155/2017/3589271
49. Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O'Reilly, M., Jeffery, I. B., Wood-Martin, R., Kerins, D. M., Quigley, E., Ross, R. P., O'Toole, P. W., Molloy, M. G., Falvey, E., Shanahan, F., & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913-1920.
https://doi.org/10.1136/gutjnl-2013-306541
50. Cataldi, S., Poli, L., Şahin, F. N., Patti, A., Santacroce, L., Bianco, A., Greco, G., Ghinassi, B., Di Baldassarre, A., & Fischetti, F. (2022). The effects of physical activity on the gut microbiota and the gut–brain Axis in preclinical and human models: A narrative review. Nutrients, 14(16), 3293. https://doi.org/10.3390/nu14163293
51. Marzola, P., Melzer, T., Pavesi, E., Gil-Mohapel, J., & Brocardo, P. S. (2023). Exploring the role of Neuroplasticity in development, aging, and Neurodegeneration. Brain Sciences, 13(12), 1610.
https://doi.org/10.3390/brainsci13121610
52. Lakhman, S., Murzello, A., & Gueits, P. G. (2024). Physical activity and dietary interventions for mental health in ageing and longevity. Healthy Ageing and Longevity, 69-93.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.