Development of Functional Cookies Enriched with Pea Pod Powder for Blood Sugar Regulation

Authors

  • Ayesha Afzal National Institute of Food Science and Technology, University of Agriculture Faisalabad
  • Asma Jaan School of Chemical Engineering Ocean and Life Sciences, Dalian University of Technology, Liaodongwan New District, Panjin, China

DOI:

https://doi.org/10.70749/ijbr.v3i9.2294

Keywords:

Antioxidant activity, Phenolic compounds, Development, Functional foods, Nutrition.

Abstract

Functional food development provides a sustainable and health-promoting approach for resolving type 2 diabetes mellitus (T2DM), a rapidly rising global health issue. This Research looked at the production and assessment of cookies fortified with pea pod powder (PPP), a nutrient-rich byproduct of pea processing. At 0%, PPP was added. Levels of 5%, 10%, 15%, and 20% replacement into wheat flour–based cookies. Thorough tests were performed to evaluate proximal composition, phytochemical content, antioxidant activity, in vitro Sensory acceptability, textural and color features, and glycemic index (pGI). Results showed a noticeable rise in protein (6.68-9.39%), fiber (0.31-7.86%), minerals (ash 0.47-1.58%), and phenolic compounds (45.2-112.3 mg GAE/100 g), while reducing carbohydrate content (71.97-59.73%). Antioxidant activity increased dramatically, with DPPH scavenging rising from 21.4% in control to 75.2% at 20% PPP. The predicted glycemic index fell from 78.4. Reflecting increased resistant starch and decreased quickly digestible starch fractions, to 62.3. Sensory assessment showed satisfactory quality with 5-10% replacements up to 20% PPP incorporation. striking the best equilibrium between nutrition and consumer preference. Pea pod powder enhanced cookies are generally a promising functional food development that helps to control blood sugar and promote sustainable consumer-accessible dietary therapies for T2DM management and byproduct usage.

Downloads

Download data is not yet available.

References

1. Aldisi, D., Al-Daghri, N. M., Sabico, S., Alenad, A., Al-Hamdan, R., Wani, K., & Hussain, S. D. (2024). Freeze-dried pea supplementation improves glycemic control compared to kale in women with obesity: A randomized cross-over trial. Frontiers in Nutrition, 11, 1370677.

https://doi.org/10.3389/fnut.2024.1370677

2. Guiné, R. P., & Florença, S. G. (2024). Development and characterisation of functional bakery products. Physchem, 4(3), 234-257.

https://doi.org/10.3390/physchem4030017

3. Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281.

https://doi.org/10.1016/j.diabres.2018.02.023

4. Liao, W., Cao, X., Xia, H., Wang, S., Chen, L., & Sun, G. (2023). Pea protein hydrolysate reduces blood glucose in high-fat diet and streptozotocin-induced diabetic mice. Frontiers in Nutrition, 10, 1298046.

https://doi.org/10.3389/fnut.2023.1298046

5. Nasir, G., Zaidi, S., Tabassum, N., & Asfaq. (2024). A review on nutritional composition, health benefits and potential applications of by-products from pea processing. Biomass Conversion and Biorefinery, 14(10), 10829-10842.

https://doi.org/10.1007/s13399-022-03324-0

6. El‐Nashar, H. A., Taleb, M., EL‐Shazly, M., Zhao, C., & Farag, M. A. (2024). Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytotherapy Research, 38(2), 662-693.

https://doi.org/10.1002/ptr.8067

7. Singh, A., & Poonia, A. (2023). Pea pod powder as a value-added food ingredient for enhancing the nutritional and antioxidant properties of cookies. The Indian Journal of Nutrition and Dietetics, 60(1), 112–120.

https://doi.org/10.21048/ijnd.2023.60.1.32647

8. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Magliano, D. J., & Williams, R. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119.

https://doi.org/10.1016/j.diabres.2021.109119

9. Mollard, R. C., Luhovyy, B. L., Smith, C., & Anderson, G. H. (2014). Acute effects of pea protein and hull fibre alone and combined on blood glucose, appetite, and food intake in healthy young men–a randomized crossover trial. Applied Physiology, Nutrition, and Metabolism, 39(12), 1360-1365.

https://doi.org/10.1139/apnm-2014-0170

10. Aldisi, D., Al-Daghri, N. M., Sabico, S., Alenad, A., Al-Hamdan, R., Wani, K., & Hussain, S. D. (2024). Freeze-dried pea supplementation improves glycemic control compared to kale in women with obesity: A randomized cross-over trial. Frontiers in Nutrition, 11, 1370677.

https://doi.org/10.3389/fnut.2024.1370677

11. Brennan, M. A., Derbyshire, E., Tiwari, B. K., & Brennan, C. S. (2018). Ready-to-eat snack products: the role of extrusion technology in developing consumer-acceptable and nutritious snacks. International Journal of Food Science & Technology, 53(1), 1–13.

https://doi.org/10.1111/ijfs.12055

12. Costa, G. E. A., Queiroz-Monici, K. S., Reis, S. M. P. M., & Oliveira, A. C. (2020). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), 327–330.

https://doi.org/10.1016/j.foodchem.2004.11.020

13. Liao, W., Cao, X., Xia, H., Wang, S., Chen, L., & Sun, G. (2023). Pea protein hydrolysate reduces blood glucose in high-fat diet and streptozotocin-induced diabetic mice. Frontiers in Nutrition, 10, 1298046.

https://doi.org/10.3389/fnut.2023.1298046

14. Ravindran, R., Jaiswal, S., & Jaiswal, A. K. (2018). Sustainable valorisation of food processing by-products through bioactive compounds extraction and biorefinery approaches. Food Research International, 120, 325–340.

https://doi.org/10.1007/978-981-13-1933-4_2

15. Shahidi, F., & Ambigaipalan, P. (2019). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 57, 64–81.

https://doi.org/10.1016/j.jff.2019.03.018

16. Singh, A., & Poonia, A. (2023). Pea pod powder as a value-added food ingredient for enhancing the nutritional and antioxidant properties of cookies. The Indian Journal of Nutrition and Dietetics, 60(1), 112–120.

https://doi.org/10.21048/ijnd.2023.60.1.32647

17. Weickert, M. O., & Pfeiffer, A. F. H. (2018). Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. Journal of Nutrition, 148(1), 7–12.

https://doi.org/10.1093/jn/nxx008

18. Binou, P., Yanni, A. E., & Karathanos, V. T. (2022). Physical properties, sensory acceptance, postprandial glycemic response, and satiety of cereal based foods enriched with legume flours: A review. Critical Reviews in Food Science and Nutrition, 62(10), 2722-2740.

https://doi.org/10.1080/10408398.2020.1858020

19. Xu, J., Zhang, Y., Zhao, Y., & Dong, C. (2020). Application of legume flours in bakery products: Effects on nutritional quality and sensory properties. Foods, 9(2), 154. https://doi.org/10.3390/foods9020154

20. Aldisi, D., Al-Daghri, N. M., Sabico, S., Alenad, A., Al-Hamdan, R., Wani, K., & Hussain, S. D. (2024). Freeze-dried pea supplementation improves glycemic control compared to kale in women with obesity: A randomized cross-over trial. Frontiers in Nutrition, 11, 1370677. https://doi.org/10.3389/fnut.2024.1370677

21. Liao, W., Cao, X., Xia, H., Wang, S., Chen, L., & Sun, G. (2023). Pea protein hydrolysate reduces blood glucose in high-fat diet and streptozotocin-induced diabetic mice. Frontiers in Nutrition, 10, 1298046. https://doi.org/10.3389/fnut.2023.1298046

22. Shahidi, F., & Ambigaipalan, P. (2019). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 57, 64–81.

https://doi.org/10.1016/j.jff.2015.06.018

23. Weickert, M. O., & Pfeiffer, A. F. H. (2018). Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. Journal of Nutrition, 148(1), 7–12. https://doi.org/10.1093/jn/nxx008

24. Xu, J., Zhang, Y., Zhao, Y., & Dong, C. (2020). Application of legume flours in bakery products: Effects on nutritional quality and sensory properties. Foods, 9(2), 154.

25. AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). AACC International.

https://doi.org/10.1016/s0144-8617(01)00358-7

26. AOAC. (2019). Official methods of analysis (21st ed.). Association of Official Analytical Chemists.

27. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

28. Goni, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427–437.

https://doi.org/10.1016/S0271-5317(97)00045-9

29. Meilgaard, M., Civille, G. V., & Carr, B. T. (2007). Sensory evaluation techniques (4th ed.). CRC Press.

30. Minolta Camera Co. (2007). Color measurement guide: CR-400 Chroma Meter instruction manual. Minolta Camera Co.

31. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237.

https://doi.org/10.1016/S0891-5849(98)00315-3

32. Shahidi, F., & Ambigaipalan, P. (2019). Phenolics and polyphenolics in foods, beverages, and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 820–897.

https://doi.org/10.1016/j.jff.2019.06.035

33. Singh, R., & Poonia, P. (2023). Processing and functional properties of pea pod powder. Journal of Food Science and Technology, 60(5), 1850–1862.

https://doi.org/10.1007/s13197-023-05678-1

34. Stable Micro Systems. (2010). TA.XT Plus Texture Analyzer: User manual. Stable Micro Systems.

35. Stone, H., Bleibaum, R., & Thomas, H. A. (2012). Sensory evaluation practices (4th ed.). Elsevier Academic Press.

36. American Diabetes Association. (2023). Standards of care in diabetes—2023. Diabetes Care, 46(Supplement__1), S1–S194.

https://doi.org/10.2337/dc23-SINT

37. Jenkins, D. J. A., Kendall, C. W. C., Augustin, L. S. A., Franceschi, S., Hamidi, M., Marchie, A., … Axelsen, M. (2002). Glycemic index: Overview of implications in health and disease. The American Journal of Clinical Nutrition, 76(1), 266S–273S.

https://doi.org/10.1093/ajcn/76/1.266S

38. Naveed, H., Sultan, W., Awan, K. A., Imtiaz, A., Yaqoob, S., Al-Asmari, F., … Nayik, G. A. (2024). Glycemic impact of cereal and legume-based bakery products: Implications for chronic disease management. Food Chemistry: X, 24, 101959.

https://doi.org/10.1016/j.fochx.2024.101959

39. Sofi, F., et al. (2020). In vitro starch digestibility and glycemic index reduction of gluten-free rice noodles with increasing chickpea incorporation. In Frontiers in Sustainable Food Systems, 4, Article 1251760.

https://doi.org/10.3389/fsufs.2024.1251760

40. Irondi, E., et al. (2024). Anti-hyperglycemic/antidiabetic activity of legumes in gluten-free formulations: Functional, nutritional, and nutraceutical importance. Frontiers in Sustainable Food Systems.

https://doi.org/10.3389/fsufs.2024.1251760

41. Weickert, M. O., & Pfeiffer, A. F. H. (2018). Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. The Journal of Nutrition, 148(1), 7–12.

https://doi.org/10.1093/jn/nxx008

42. Aldisi, D., Al-Daghri, N. M., Sabico, S., Alenad, A., Al-Hamdan, R., Wani, K., & Hussain, S. D. (2024). Freeze-dried pea supplementation improves glycemic control compared to kale in women with obesity: A randomized cross-over trial. Frontiers in Nutrition, 11, 1370677.

https://doi.org/10.3389/fnut.2024.1370677

43. American Diabetes Association. (2023). Standards of care in diabetes—2023. Diabetes Care, 46(Supplement_1), S1–S194.

https://doi.org/10.2337/dc23-SINT

44. Brennan, M. A., Derbyshire, E., Tiwari, B. K., & Brennan, C. S. (2018). Ready-to-eat snack products: The role of extrusion technology in developing consumer-acceptable and nutritious snacks. International Journal of Food Science & Technology, 53(1), 1–13.

https://doi.org/10.1111/ijfs.13506

45. Costa, G. E. A., Queiroz-Monici, K. S., Reis, S. M. P. M., & Oliveira, A. C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), 327–330.

https://doi.org/10.1016/j.foodchem.2004.11.020

46. Jenkins, D. J. A., Kendall, C. W. C., Augustin, L. S. A., Franceschi, S., Hamidi, M., Marchie, A., … Axelsen, M. (2002). Glycemic index: Overview of implications in health and disease. The American Journal of Clinical Nutrition, 76(1), 266S–273S.

https://doi.org/10.1093/ajcn/76/1.266S

47. Mollard, R. C., Luhovyy, B. L., Smith, C., & Anderson, G. H. (2014). Acute effects of pea protein and hull fibre alone and combined on blood glucose, appetite, and food intake in healthy young men: A randomized crossover trial. Applied Physiology, Nutrition, and Metabolism, 39(12), 1360–1365.

https://doi.org/10.1139/apnm-2014-0141

48. Ravindran, R., Jaiswal, S., & Jaiswal, A. K. (2018). Sustainable valorisation of food processing by-products through bioactive compounds extraction and biorefinery approaches. Food Research International, 120, 325–340.

https://doi.org/10.1016/j.foodres.2018.10.002

49. Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 18, 820–897.

https://doi.org/10.1016/j.jff.2015.06.018

50. Singh, A., & Poonia, A. (2023). Pea pod powder as a value-added food ingredient for enhancing the nutritional and antioxidant properties of cookies. The Indian Journal of Nutrition and Dietetics, 60(1), 112–120.

https://doi.org/10.21048/ijnd.2023.60.1.32647

51. Tomlin, J., & Read, N. W. (1988). The effect of pea fibre on human colonic function and glucose tolerance. British Journal of Nutrition, 60(3), 445–456.

https://doi.org/10.1079/BJN19880117

52. Weickert, M. O., & Pfeiffer, A. F. H. (2018). Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. The Journal of Nutrition, 148(1), 7–12.

https://doi.org/10.1093/jn/nxx008

53. Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., … Murray, C. J. L. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–492.

https://doi.org/10.1016/S0140-6736(18)31788-4

Downloads

Published

2025-09-15

How to Cite

Afzal, A., & Jaan, A. (2025). Development of Functional Cookies Enriched with Pea Pod Powder for Blood Sugar Regulation. Indus Journal of Bioscience Research, 3(9), 91-99. https://doi.org/10.70749/ijbr.v3i9.2294