Methicillin Resistance in Staphylococcus aureus: A Review of the mecA Gene and Its Role in Antibiotic Resistance

Authors

  • Faiqa Tabassum Institute of Microbiology University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Anam Munir Institute of Microbiology University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Faiqa Shakeel Faculty of Engineering and Science (FES), University of Greenwich, England.
  • Tania Zia Department of Microbiology, University of Central Punjab, Lahore, Punjab, Pakistan.
  • Muhammad Umar Zafar Khan Institute of Microbiology University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Zohaib Tahir Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KP, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i9.2302

Keywords:

Staphylococcus aureus, MRSA, mecA gene, PBP2a, β-lactam Resistance, Antimicrobial Resistance, SCCmec, Molecular Diagnostics.

Abstract

Staphylococcus aureus is a common pathogen that can cause a wide range of infections, including endocarditis, severe bacteremia, and infections of the skin and soft tissues. Because of its resistance to β-lactam antibiotics, methicillin-resistant S. aureus (MRSA), which is caused by the mecA gene encoding penicillin-binding protein 2a (PBP2a), is a serious problem. This review describes the molecular mechanisms, regulatory pathways involving mecR1 and mecI, and the genetic context of mecA within the Staphylococcal Cassette Chromosome mec (SCCmec). Along with diagnostic techniques like PCR, CRISPR-based detection, and next-generation sequencing, we investigate the epidemiology of hospital-acquired (HA-MRSA), community-acquired (CA-MRSA), and livestock-associated (LA-MRSA) strains. Vancomycin resistance is one of the therapeutic limitations that are addressed; new strategies such as phage therapy, combination therapies, and anti-PBP2a inhibitors show promise. Emerging resistance mechanisms, such as mecC and biofilm formation, highlight the need for surveillance. In order to lessen MRSA's worldwide impact, future strategies will prioritize stewardship, new antibiotics, and quick diagnostics.

Downloads

Download data is not yet available.

References

1. Lowy, F. D. (1998). Staphylococcus aureusInfections. New England Journal of Medicine, 339(8), 520-532.

https://doi.org/10.1056/nejm199808203390806

2. Barber, M. (1961). Methicillin-resistant staphylococci. Journal of Clinical Pathology, 14(4), 385-393.

https://doi.org/10.1136/jcp.14.4.385

3. Hartman, B. J., & Tomasz, A. (1984). Low-affinity penicillin-binding protein associated with beta-lactam resistance in staphylococcus aureus. Journal of Bacteriology, 158(2), 513-516.

https://doi.org/10.1128/jb.158.2.513-516.1984

4. Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629-641.

https://doi.org/10.1038/nrmicro2200

5. Mafe, A. N., & Büsselberg, D. (2025). Phage therapy in managing multidrug-resistant (MDR) infections in cancer therapy: Innovations, complications, and future directions. Pharmaceutics, 17(7), 820.

https://doi.org/10.3390/pharmaceutics17070820

6. Katayama, Y., Ito, T., & Hiramatsu, K. (2000). A New Class of Genetic Element, Staphylococcus Cassette Chromosome mec , Encodes Methicillin Resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 44(6), 1549-1555.

https://doi.org/10.1128/aac.44.6.1549-1555.2000

7. Horgan, M., Abbott, Y., Lawlor, P. G., Rossney, A., Coffey, A., Fitzgerald, G. F., McAuliffe, O., & Paul Ross, R. (2011). A study of the prevalence of methicillin-resistant staphylococcus aureus in pigs and in personnel involved in the pig industry in Ireland. The Veterinary Journal, 190(2), 255-259.

https://doi.org/10.1016/j.tvjl.2010.10.025

8. Ledger, E. V., Recker, M., & Massey, R. C. (2025). Expression of mecA reduces the daptomycin susceptibility of Staphylococcus aureus.

https://doi.org/10.1101/2025.02.10.637576

9. Classification of Staphylococcal Cassette Chromosome mec (SCC mec ): Guidelines for Reporting Novel SCC mec Elements. (2009). Antimicrobial Agents and Chemotherapy, 53(12), 4961-4967.

https://doi.org/10.1128/aac.00579-09

10. Li, J., Cheng, F., Wei, X., Bai, Y., Wang, Q., Li, B., Zhou, Y., Zhai, B., Zhou, X., Wang, W., & Zhang, J. (2025). Methicillin-resistant staphylococcus aureus (MRSA): Resistance, prevalence, and coping strategies. Antibiotics, 14(8), 771.

https://doi.org/10.3390/antibiotics14080771

11. Spratt, B. G. (1994). Resistance to antibiotics mediated by target alterations. Science, 264(5157), 388-393.

https://doi.org/10.1126/science.8153626

12. Akwu, N. A., Naidoo, Y., Singh, M., Lin, J., Aribisala, J. O., Sabiu, S., Lekhooa, M., & Aremu, A. O. (2025). Phytochemistry, antibacterial and antioxidant activities of Grewia lasiocarpa E. Mey. Ex Harv. Fungal endophytes: A computational and experimental validation study. Chemistry & Biodiversity, 22(5).

https://doi.org/10.1002/cbdv.202402908

13. Ceftaroline: A new cephalosporin with activity against methicillin-resistant staphylococcus aureus (MRSA). (2011). Clinical Medicine Reviews in Therapeutics, 3, 1-17.

https://doi.org/10.4137/cmrt.s1637

14. Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., & Spratt, B. G. (2002). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences, 99(11), 7687-7692.

https://doi.org/10.1073/pnas.122108599

15. Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., ... & Dekker, D. M. (2024). Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet, 404(10459), 1199-1226.

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(24)01867-1/fulltext?hidemenu=true

16. Wolford, H., McCarthy, N. L., Baggs, J., Hatfield, K. M., Maillis, A., Olubajo, B., Bishop, J., Ferretti, M., Craig, M. R., Magill, S. S., McDonald, L. C., Sievert, D. M., Spalding Walters, M., Jernigan, J. A., Lutgring, J. D., & Reddy, S. C. (2025). Antimicrobial-resistant infections in hospitalized patients. JAMA Network Open, 8(3), e2462059.

https://doi.org/10.1001/jamanetworkopen.2024.62059

17. Esteves, M. A., Carvalho, M. F., Viana, A. S., Martini, C. L., Longo, L. G., Silva, D. N., Ferreira, A. L., Ferreira-Carvalho, B. T., Planet, P. J., & Figueiredo, A. M. (2025). Decoding the evolutionary history of ST30 staphylococcus aureus: Insights into a potentially silent MSSA bloodstream pathogen. Frontiers in Microbiology, 16.

https://doi.org/10.3389/fmicb.2025.1522747

18. Voss, A., Loeffen, F., Bakker, J., Klaassen, C., & Wulf, M. (2005). Methicillin-resistantstaphylococcus aureusin pig farming. Emerging Infectious Diseases, 11(12), 1965-1966.

https://doi.org/10.3201/eid1112.050428

19. Maraolo, A. E., Gatti, M., Principe, L., Marino, A., Pipitone, G., De Pascale, G., & Ceccarelli, G. (2025). Management of methicillin-resistant Staphylococcus aureus bloodstream infections: A comprehensive narrative review of available evidence focusing on current controversies and the challenges ahead. Expert Review of Anti-infective Therapy, 23(6), 389-414.

https://doi.org/10.1080/14787210.2025.2487163

20. Wertheim, H. F., Melles, D. C., Vos, M. C., Van Leeuwen, W., Van Belkum, A., Verbrugh, H. A., & Nouwen, J. L. (2005). The role of nasal carriage in staphylococcus aureus infections. The Lancet Infectious Diseases, 5(12), 751-762.

https://doi.org/10.1016/s1473-3099(05)70295-4

21. Huletsky, A., Giroux, R., Rossbach, V., Gagnon, M., Vaillancourt, M., Bernier, M., Gagnon, F., Truchon, K., Bastien, M., Picard, F. J., Van Belkum, A., Ouellette, M., Roy, P. H., & Bergeron, M. G. (2004). New real-time PCR assay for rapid detection of methicillin- ResistantStaphylococcus aureusDirectly from specimens containing a mixture of staphylococci. Journal of Clinical Microbiology, 42(5), 1875-1884.

https://doi.org/10.1128/jcm.42.5.1875-1884.2004

22. Gill, A. A., Singh, S., Thapliyal, N., & Karpoormath, R. (2019). Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant staphylococcus aureus: A review. Microchimica Acta, 186(2).

https://doi.org/10.1007/s00604-018-3186-7

23. Sim, Y. X., Lee, Q. W., Abushelaibi, A., Lai, K., Lim, S. H., & Maran, S. (2022). Current molecular approach for diagnosis of MRSA: A meta-narrative review. Drug Target Insights, 16(1), 88-96.

https://doi.org/10.33393/dti.2022.2522

24. McGuinness, W. A., Malachowa, N., & DeLeo, F. R. (2017). Vancomycin resistance in Staphylococcus aureus. The Yale journal of biology and medicine, 90(2), 269.

25. Fiore, M., Alfieri, A., Fiore, D., Iuliano, P., Spatola, F. G., Limone, A., Pezone, I., & Leone, S. (2025). Use of Daptomycin to manage severe MRSA infections in humans. Antibiotics, 14(6), 617.

https://doi.org/10.3390/antibiotics14060617

26. Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4).

https://doi.org/10.1128/cmr.00020-18

27. Sivori, F., Cavallo, I., Truglio, M., Pelagalli, L., Mariani, V., Fabrizio, G., Abril, E., Santino, I., Fradiani, P. A., Solmone, M., Pimpinelli, F., Toma, L., Arcioni, R., De Blasi, R. A., & Di Domenico, E. G. (2024). Biofilm-mediated antibiotic tolerance in Staphylococcus aureus from spinal cord stimulation device-related infections. Microbiology Spectrum, 12(12).

https://doi.org/10.1128/spectrum.01683-24

28. Lawes, T., Lopez-Lozano, J., Nebot, C. A., Macartney, G., Subbarao-Sharma, R., Dare, C. R., Wares, K. D., & Gould, I. M. (2015). Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant staphylococcus aureus infections across a region of Scotland: A non-linear time-series study. The Lancet Infectious Diseases, 15(12), 1438-1449.

https://doi.org/10.1016/s1473-3099(15)00315-1

29. Kim, Y. C., Kim, M. H., Song, J. E., Ahn, J. Y., Oh, D. H., Kweon, O. M., Lee, D., Kim, S. B., Kim, H., Jeong, S. J., Ku, N. S., Han, S. H., Park, E. S., Yong, D., Song, Y. G., Lee, K., Kim, J. M., & Choi, J. Y. (2013). Trend of methicillin-resistant staphylococcus aureus (MRSA) bacteremia in an institution with a high rate of MRSA after the reinforcement of antibiotic stewardship and hand hygiene. American Journal of Infection Control, 41(5), e39-e43.

https://doi.org/10.1016/j.ajic.2012.12.018

Downloads

Published

2025-09-15

How to Cite

Tabassum, F., Munir, A., Shakeel, F., Zia, T., Zafar Khan, M. U., & Tahir, Z. (2025). Methicillin Resistance in Staphylococcus aureus: A Review of the mecA Gene and Its Role in Antibiotic Resistance. Indus Journal of Bioscience Research, 3(9). https://doi.org/10.70749/ijbr.v3i9.2302