Revolutionizing Sustainable Agriculture: Harnessing Macrofungi and Bacterial Systems for Eco-Friendly Silver Nanoparticle Synthesis and Enhanced Plant Growth
DOI:
https://doi.org/10.70749/ijbr.v3i10.2317Keywords:
Sustainable Agriculture, Silver Nanoparticles (AgNPs), Green Synthesis, Macrofungi and Bacterial Systems, Plant Growth Promotion, Environmental sustainability.Abstract
Nanotechnology offers transformative potential in modern agriculture, providing sustainable alternatives to conventional agrochemicals. This review examines the synthesis, characterization, and applications of silver nanoparticles (AgNPs), emphasizing biologically mediated “green synthesis” via fungi and bacteria. These eco-friendly approaches exploit microbial reductive enzymes, such as nitrate reductase and oxidoreductases, to convert silver ions (Ag⁺) into nanoparticles, avoiding the environmental and energetic drawbacks of chemical and physical methods. AgNPs exhibit strong antimicrobial activity through membrane disruption, reactive oxygen species (ROS) generation, and enzyme inhibition, making them effective against phytopathogens. Additionally, they promote seed germination, root elongation, and modulate phytohormone pathways, benefits attributed to their high surface-area-to-volume ratio and tunable physicochemical properties. Both intracellular and extracellular biosynthetic routes are discussed, with evaluation of their scalability, stability, and yield. Characterization techniques, including UV-vis spectroscopy, SEM, XRD, FTIR, and AFM, provide insights into size (5–100 nm), shape, crystallinity, and dispersity, key factors influencing efficacy. In soil systems, AgNPs function as nanopesticides and nanofertilizers, enhancing nutrient bioavailability and reducing agrochemical runoff. Advances focus on optimizing microbial strains (e.g., Bacillus subtilis, Aspergillus niger), controlling zeta potential, and surface functionalization for targeted applications. Challenges such as phytotoxicity, bioaccumulation, and regulatory concerns persist. By integrating over 50 studies, this review underscores AgNPs’ potential to support resilient, resource-efficient farming while highlighting the need for standardized protocols, long-term field assessments, and comprehensive safety evaluations to realize nanotechnology’s full agricultural promise.
Downloads
References
1. Arshad, A., Cîmpeanu, S. M., Jerca, I. O., Sovorn, C., Ali, B., Badulescu, L. A., & Drăghici, E. M. (2024). Assessing the growth, yield, and biochemical composition of greenhouse cherry tomatoes with special emphasis on the progressive growth report. BMC Plant Biology, 24(1).
https://doi.org/10.1186/s12870-024-05701-5
2. Nitu, O. A., Ivan, E. Ş., Tronac, A. S., & Arshad, A. (2024). Optimizing lettuce growth in nutrient film technique hydroponics: Evaluating the impact of elevated oxygen concentrations in the root zone under LED illumination. Agronomy, 14(9), 1896.
https://doi.org/10.3390/agronomy14091896
3. Ali, B., Arshad, A., Javed, M. A., Kaplan, A., Suleman, F., Hafeez, A., Ali, S., Khan, M. N., Singh, N., Garhwal, V., & Fahad, S. (2025). Biochar-induced regulation on primary and secondary metabolites in plants under abiotic stress. Biochar in Mitigating Abiotic Stress in Plants, 119-133.
https://doi.org/10.1016/b978-0-443-24137-6.00007-0
4. Gupta, P., Rai, N., Verma, A., & Gautam, V. (2023). Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Medicinal Research Reviews, 44(1), 138-168.
https://doi.org/10.1002/med.21981
5. Singh, Y. R., Selvam, A., Lokhande, P., & Chakrabarti, S. (2023). Sustainability: an emerging design criterion in nanoparticles synthesis and applications. Bioinspired and Green Synthesis of Nanostructures, 65-113.
https://doi.org/10.1002/9781394174928.ch4
6. Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65(1), 150-153.
https://doi.org/10.1016/j.colsurfb.2008.02.018
7. Danish, M., Altaf, M., Robab, M. I., Shahid, M., Manoharadas, S., Hussain, S. A., & Shaikh, H. (2021). Green synthesized silver nanoparticles mitigate biotic stress induced by Meloidogyne incognita in Trachyspermum ammi (L.) by improving growth, biochemical, and antioxidant enzyme activities. ACS Omega, 6(17), 11389-11403.
https://doi.org/10.1021/acsomega.1c00375
8. Jerca, I. O., Cîmpeanu, S. M., Teodorescu, R. I., Drăghici, E. M., Nițu, O. A., Sannan, S., & Arshad, A. (2024). A comprehensive assessment of the morphological development of inflorescence, yield potential, and growth attributes of summer-grown, greenhouse cherry tomatoes. Agronomy, 14(3), 556.
https://doi.org/10.3390/agronomy14030556
9. Kumar, A., Singh, K., Verma, P., Singh, O., Panwar, A., Singh, T., Kumar, Y., & Raliya, R. (2022). Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Scientific Reports, 12(1).
https://doi.org/10.1038/s41598-022-10843-3
10. Leonardi, M., Comandini, O., Sanjust, E., & Rinaldi, A. C. (2021). Conservation status of Milkcaps (Basidiomycota, Russulales, Russulaceae), with notes on poorly known species. Sustainability, 13(18), 10365.
https://doi.org/10.3390/su131810365
11. Chauhan, A., Anand, J., Parkash, V., & Rai, N. (2022). Biogenic synthesis: A sustainable approach for nanoparticles synthesis mediated by fungi. Inorganic and Nano-Metal Chemistry, 53(5), 460-473.
https://doi.org/10.1080/24701556.2021.2025078
12. El-Batal, A. I., Al-Hazmi, N. E., Mosallam, F. M., & El-Sayyad, G. S. (2018). Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microbial Pathogenesis, 118, 159-169.
https://doi.org/10.1016/j.micpath.2018.03.013
13. Zhao, X., Zhou, L., Riaz Rajoka, M. S., Yan, L., Jiang, C., Shao, D., Zhu, J., Shi, J., Huang, Q., Yang, H., & Jin, M. (2017). Fungal silver nanoparticles: Synthesis, application and challenges. Critical Reviews in Biotechnology, 38(6), 817-835.
https://doi.org/10.1080/07388551.2017.1414141
14. Basavaraja, S., Balaji, S., Lagashetty, A., Rajasab, A., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43(5), 1164-1170.
https://doi.org/10.1016/j.materresbull.2007.06.020
15. Saeedullah, S., Nawaz, M., Yousaf, N., Rukhsar, S., Malhi, K., & Hanif, M. (2024). Ganoderma curtisii, firstly reported from districts Lahore and Gujranwala of Punjab province, Pakistan. Lahore Garrison University Journal of Life Sciences, 8(3), 360-378.
https://doi.org/10.54692/lgujls.2024.0803351
16. Yousaf, N. (2024). GANODERMA TSUGAE (POLYPORALES; GANODERMATACEAE), A NEW RECORD FROM PAKISTAN. Journal Plantarum., 6(2), 130–146.
https://doi.org/10.46662/plantarum.v6i2.119
17. Zubair, M., Farooq, U., Sandhu, A. S., Ali, W., Shakeel, F., & Ullah, S. S. (2025). Role of bacillus subtilis in plant growth promotion and disease suppression: A review. Indus Journal of Bioscience Research, 3(8), 468-472.
https://doi.org/10.70749/ijbr.v3i8.2199
18. Patil, R. B., & Chougale, A. D. (2021). Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Materials Today: Proceedings, 47, 5520-5532.
https://doi.org/10.1016/j.matpr.2021.03.384
19. Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2016). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1272-1291.
https://doi.org/10.1080/21691401.2016.1241792
20. Iravani, S. (2014). Bacteria in Nanoparticle synthesis: Current status and future prospects. International Scholarly Research Notices, 2014, 1-18.
https://doi.org/10.1155/2014/359316
21. Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611-13614.
https://doi.org/10.1073/pnas.96.24.13611
22. Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), 452-456.
https://doi.org/10.1016/j.nano.2009.01.012
23. Saifuddin, N., Wong, C. W., & Yasumira, A. A. (2008). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry, 6(1), 61-70.
https://doi.org/10.1155/2009/734264
24. Mabey, T., Andrea Cristaldi, D., Oyston, P., Lymer, K. P., Stulz, E., Wilks, S., William Keevil, C., & Zhang, X. (2019). Bacteria and nanosilver: The quest for optimal production. Critical Reviews in Biotechnology, 39(2), 272-287.
https://doi.org/10.1080/07388551.2018.1555130
25. Das, S. K., & Marsili, E. (2010). A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Reviews in Environmental Science and Bio/Technology, 9(3), 199-204.
https://doi.org/10.1007/s11157-010-9188-5
26. Ali, D. M., Sasikala, M., Gunasekaran, M., & Thajuddin, N. (2011). Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct, 6(2), 385-390.
https://chalcogen.ro/385_Mubarak.pdf
27. Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports, 15, 33-40.
https://doi.org/10.1016/j.btre.2017.02.006
28. Lin, I. W., Lok, C., & Che, C. (2014). Biosynthesis of silver nanoparticles from silver (i) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem. Sci, 5(8), 3144-3150.
https://doi.org/10.1039/c4sc00138a
29. Singh, P., Kim, Y., Zhang, D., & Yang, D. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588-599.
https://doi.org/10.1016/j.tibtech.2016.02.006
30. Brandelli, A., & Veras, F. F. (2023). Biosynthesis of gold nanoparticles by fungi. Mycosynthesis of Nanomaterials, 146-171.
https://doi.org/10.1201/9781003327387-9
31. Tripathi, M. (2017). Characterization of silver nanoparticles synthesizing bacteria and its possible use in treatment of multi drug resistant isolate. Frontiers in Environmental Microbiology, 3(4), 62.
https://doi.org/10.11648/j.fem.20170304.12
32. Barabadi, H., Honary, S., Ebrahimi, P., Alizadeh, A., Naghibi, F., & Saravanan, M. (2019). Optimization of myco-synthesized silver nanoparticles by response surface methodology employing box-behnken design. Inorganic and Nano-Metal Chemistry, 49(2), 33-43.
https://doi.org/10.1080/24701556.2019.1583251
33. Poudel, M., Pokharel, R., K.C., S., Awal, S. C., & Pradhananga, R. (2017). Biosynthesis of silver nanoparticles using Ganoderma Lucidum and assessment of antioxidant and antibacterial activity. International Journal of Applied Sciences and Biotechnology, 5(4), 523-531.
https://doi.org/10.3126/ijasbt.v5i4.18776
34. Abdel-Hadi, A., Iqbal, D., Alharbi, R., Jahan, S., Darwish, O., Alshehri, B., Banawas, S., Palanisamy, M., Ismail, A., Aldosari, S., Alsaweed, M., Madkhali, Y., Kamal, M., & Fatima, F. (2023). Myco-synthesis of silver nanoparticles and their Bioactive role against pathogenic microbes. Biology, 12(5), 661.
https://doi.org/10.3390/biology12050661
35. Feroze, N., Arshad, B., Younas, M., Afridi, M. I., Saqib, S., & Ayaz, A. (2019). Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique, 83(1), 72-80.
https://doi.org/10.1002/jemt.23390
36. Jaloot, A. S., Owaid, M. N., Naeem, G. A., & Muslim, R. F. (2020). Mycosynthesizing and characterizing silver nanoparticles from the mushroom Inonotus hispidus (Hymenochaetaceae), and their antibacterial and antifungal activities. Environmental Nanotechnology, Monitoring & Management, 14, 100313.
https://doi.org/10.1016/j.enmm.2020.100313
37. OWAID, M. N., NAEEM, G. A., MUSLIM, R. F., & OLEIWI, R. S. (2018). Synthesis, characterization and antitumor efficacy of silver Nanoparticle from Agaricus bisporus pileus, Basidiomycota. Walailak Journal of Science and Technology (WJST), 17(2), 75-87.
https://doi.org/10.48048/wjst.2020.5840
38. Choi, Y., Park, T. J., Lee, D. C., & Lee, S. Y. (2018). Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proceedings of the National Academy of Sciences, 115(23), 5944-5949.
https://doi.org/10.1073/pnas.1804543115
39. Shkryl, Y. N., Veremeichik, G. N., Kamenev, D. G., Gorpenchenko, T. Y., Yugay, Y. A., Mashtalyar, D. V., Nepomnyaschiy, A. V., Avramenko, T. V., Karabtsov, A. A., Ivanov, V. V., Bulgakov, V. P., Gnedenkov, S. V., Kulchin, Y. N., & Zhuravlev, Y. N. (2017). Green synthesis of silver nanoparticles using transgenic Nicotiana tabacum callus culture expressing silicatein gene from marine sponge Latrunculia oparinae. Artificial Cells, Nanomedicine, and Biotechnology, 1-13.
https://doi.org/10.1080/21691401.2017.1388248
40. Khan, S., Zahoor, M., Sher Khan, R., Ikram, M., & Islam, N. U. (2023). The impact of silver nanoparticles on the growth of plants: The agriculture applications. Heliyon, 9(6), e16928.
https://doi.org/10.1016/j.heliyon.2023.e16928
41. Sable, S. V., Ranade, S., & Joshi, S. (2018). Role of AgNPs in the enhancement of seed germination and its effect on plumule and radicle length of Pennisetum glaucum. IET Nanobiotechnology, 12(7), 922-926.
https://doi.org/10.1049/iet-nbt.2017.0304
42. Mazumdar, H., & Ahmed, G. U. (2011). Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiata and Brassica campestris. Int J Adv Biotechnol Res, 2(4), 404-13.
43. El‐Temsah, Y. S., & Joner, E. J. (2011). Impact of FE and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27(1), 42-49.
https://doi.org/10.1002/tox.20610
44. Chen, X., Chen, Y., Zou, L., Zhang, X., Dong, Y., Tang, J., McClements, D. J., & Liu, W. (2019). Plant-based nanoparticles prepared from proteins and phospholipids consisting of a core–multilayer-shell structure: Fabrication, stability, and Foamability. Journal of Agricultural and Food Chemistry, 67(23), 6574-6584.
https://doi.org/10.1021/acs.jafc.9b02028
45. Yuvaraj, M., & Sevathapandian Subramanian, K. (2020). Novel slow release Nanocomposite fertilizers. Nanotechnology and the Environment.
https://doi.org/10.5772/intechopen.93267
46. Jha, S., & Pudake, R. N. (2016). Molecular mechanism of plant–nanoparticle interactions. Plant Nanotechnology, 155-181.
https://doi.org/10.1007/978-3-319-42154-4_7
47. Sharon M, Choudhary AK, Kumar R. (2010). Nanotechnology in agricultural diseases and food safety. Journal of phytology 2(4).
48. Kaman, P. K., & Dutta, P. (2018). Synthesis, characterization and antifungal activity of biosynthesized silver nanoparticle. Indian Phytopathology, 72(1), 79-88.
https://doi.org/10.1007/s42360-018-0081-4
49. Aguilar-Méndez, M. A., San Martín-Martínez, E., Ortega-Arroyo, L., Cobián-Portillo, G., & Sánchez-Espíndola, E. (2010). Synthesis and characterization of silver nanoparticles: Effect on phytopathogen Colletotrichum gloesporioides. Journal of Nanoparticle Research, 13(6), 2525-2532.
https://doi.org/10.1007/s11051-010-0145-6
50. Ali, M., Kim, B., Belfield, K. D., Norman, D., Brennan, M., & Ali, G. S. (2015). Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology®, 105(9), 1183-1190.
https://doi.org/10.1094/phyto-01-15-0006-r
51. AD, B., PM, N., & BV, B. (2013). Fungicidal potential of biosynthesized silver nanoparticles against phyto-pathogens and potentiation of fluconazole. World, 1(1), 12-15.
52. Cromwell, W. A., Yang, J., Starr, J. L., & Jo, Y. K. (2014). Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. Journal of nematology, 46(3), 261.
53. Sherkhane, A. S., Suryawanshi, H. H., Mundada, P. S., & Shinde, B. P. (2018). Control of bacterial blight disease of pomegranate using silver nanoparticles. Journal of Nanomedicine & Nanotechnology, 09(03).
https://doi.org/10.4172/2157-7439.1000500
54. Elgorban, A. (2016). Extracellular synthesis of silver nanoparticles using aspergillus versicolor and evaluation of their activity on plant pathogenic fungi. Mycosphere, 7(6), 844-852.
https://doi.org/10.5943/mycosphere/7/6/15
55. Ali, S. M., Yousef, N. M., & Nafady, N. A. (2015). Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. Journal of Nanomaterials, 2015(1).
https://doi.org/10.1155/2015/218904
56. Kaman, P. K., & Dutta, P. (2017). In vitro evaluation of biosynthesized silver nanoparticles (Ag NPs) against soil borne plant pathogens. Int J Nanotechnol Appl, 11, 261-264.
57. Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE, 9(5), e97881.
https://doi.org/10.1371/journal.pone.0097881
58. Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95-99.
https://doi.org/10.1016/j.saa.2012.03.002
59. Dridi, R., Essghaier, B., Hannachi, H., Khedher, G. B., Chaffei, C., & Zid, M. F. (2022). Biosynthesized silver nanoparticles using Anagallis monelli: Evaluation of antioxidant activity, antibacterial and antifungal effects. Journal of Molecular Structure, 1251, 132076.
https://doi.org/10.1016/j.molstruc.2021.132076
60. Sardella, D., Gatt, R., & Valdramidis, V. P. (2019). Metal nanoparticles for controlling fungal proliferation: Quantitative analysis and applications. Current Opinion in Food Science, 30, 49-59.
https://doi.org/10.1016/j.cofs.2018.12.001
61. Abd-Elsalam, K., A, & Prasad, R. (Eds.). (2018). Nanobiotechnology applications in plant protection. Vol. 23. Berlin, Germany: Springer, p. 42-61.
https://doi.org/10.1007/978-3-319-91161-8
62. Fernández, J. G., Fernández-Baldo, M. A., Berni, E., Camí, G., Durán, N., Raba, J., & Sanz, M. I. (2016). Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochemistry, 51(9), 1306-1313.
https://doi.org/10.1016/j.procbio.2016.05.021
63. Yassin, M. A., Elgorban, A. M., El-Samawaty, A. E., & Almunqedhi, B. M. (2021). Biosynthesis of silver nanoparticles using penicillium verrucosum and analysis of their antifungal activity. Saudi Journal of Biological Sciences, 28(4), 2123-2127.
https://doi.org/10.1016/j.sjbs.2021.01.063
64. Al-Otibi, F., Perveen, K., Al-Saif, N. A., Alharbi, R. I., Bokhari, N. A., Albasher, G., Al-Otaibi, R. M., & Al-Mosa, M. A. (2021). Biosynthesis of silver nanoparticles using malva parviflora and their antifungal activity. Saudi Journal of Biological Sciences, 28(4), 2229-2235.
https://doi.org/10.1016/j.sjbs.2021.01.012
65. Devi, H., S., Boda, M., A., Rubab, S., Parveen, S., Wani, A., H, & Shah, M. A. (2021). Biosynthesis and antifungal activities of CuO and Al2O3 nanoparticles. Vol. 94. In Comprehensive Analytical Chemistry: Elsevier, p. 533-546.
https://doi.org/10.1016/bs.coac.2020.12.005
66. Abdulsada, Z., Kibbee, R., Örmeci, B., DeRosa, M., & Princz, J. (2021). Impact of anaerobically digested silver and copper oxide nanoparticles in biosolids on soil characteristics and bacterial community. Chemosphere, 263, 128173.
https://doi.org/10.1016/j.chemosphere.2020.128173
67. Pallavi, Mehta, C. M., Srivastava, R., Arora, S., & Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6(2).
https://doi.org/10.1007/s13205-016-0567-7
68. Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek ( Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25(3), 443-447.
https://doi.org/10.1016/j.jsps.2016.09.012
69. Banjara, R. A., Kumar, A., Aneshwari, R. K., Satnami, M. L., & Sinha, S. (2024). A comparative analysis of chemical vs green synthesis of nanoparticles and their various applications. Environmental Nanotechnology, Monitoring & Management, 22, 100988.
https://doi.org/10.1016/j.enmm.2024.100988
70. Can, M. (2019). Green gold nanoparticles from plant-derived materials: An overview of the reaction synthesis types, conditions, and applications. Reviews in Chemical Engineering, 36(7), 859-877.
https://doi.org/10.1515/revce-2018-0051
71. De Souza, C. D., Nogueira, B. R., & Rostelato, M. E. (2019). Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. Journal of Alloys and Compounds, 798, 714-740.
https://doi.org/10.1016/j.jallcom.2019.05.153
72. Zafar, S., Farooq, A., Batool, S., Tariq, T., Hasan, M., & Mustafa, G. (2024). Green synthesis of iron oxide nanoparticles for mitigation of chromium stress and anti-oxidative potential in triticum aestivum. Hybrid Advances, 5, 100156.
https://doi.org/10.1016/j.hybadv.2024.100156
73. Mohan, Y. M., Vimala, K., Thomas, V., Varaprasad, K., Sreedhar, B., Bajpai, S., & Raju, K. M. (2010). Controlling of silver nanoparticles structure by hydrogel networks. Journal of Colloid and Interface Science, 342(1), 73-82.
https://doi.org/10.1016/j.jcis.2009.10.008
74. Guilger, M., Pasquoto-Stigliani, T., Bilesky-Jose, N., Grillo, R., Abhilash, P. C., Fraceto, L. F., & Lima, R. D. (2017). Biogenic silver nanoparticles based on trichoderma harzianum: Synthesis, characterization, toxicity evaluation and biological activity. Scientific Reports, 7(1).
https://doi.org/10.1038/srep44421
75. Zahran, M., K, A, A, Mohamed, F, M, Mohamed, M, H, & El-Rafie (2013). Optimization of biological synthesis of silver nanoparticles by some yeast fungi. Egyptian Journal of Chemistry, 56(1): 91-110.
https://doi.org/10.21608/ejchem.2013.1078
76. EPA, U. (1996). US environmental protection agency: ecological effects test guidelines (OPPTS 850. 4200): seed/germination/root elongation toxicity test. US environmental protection agency, Washington, DC.
77. Shivaji, S., Madhu, S., & Singh, S. (2011). Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry, 46(9), 1800-1807.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.