Dietary Strategies for Better Immune Function: Evaluating the Role of Diet in Immune Function
DOI:
https://doi.org/10.70749/ijbr.v3i9.2363Keywords:
Nutrition and Immune Function, Micronutrients, Vitamins, Minerals, Probiotics and Prebiotics, Malnutrition and Immunity, Inflammation and Chronic Diseases.Abstract
It is commonly known that inadequate nutrition can affect immunological function. Increased consumption of several nutrients over the currently advised levels may assist optimize immunological activities, such as enhancing defence function and, consequently, infection resistance, while preserving tolerance, according to mounting data. Nutrition serves a vital part in maintaining immune function, shaping the possibility to infections, autoimmune diseases, and chronic conditions. This review thoroughly analyzes nutritional plans and their effect on defense efficiency, merging evidence from clinical, biochemical and epidemiological studies. It explores how malnutrition damage defense response and interfere with gut barrier stability and modify microbiota formation. Specific reinforcement is on vital micronutrients including Vitamin A, C, D, E, B6, B12, folate, iron, zinc, selenium, and copper, and their functional part in aiding innate and adaptive response. It also analyzes the gut-immune axis and the part of probiotics and prebiotics in improving mucosal defense by microbial maintenance. Dietary epigenetics are examined in the setting of maternal and infant life nutrition, evaluating how availability of adequate nutrients during first 2 years of life can outline defense mechanism and prolonged well-being. Recent findings on nutritional polyphenols, bioactive peptides and omega-3 FAs are analyzed, specifically about capacity in reducing inflammation and autoimmunity. Nutritional strategies for immunocompromised communities, like old age people or persons with chronic diseases are also analyzed.
Downloads
References
1. McComb, S., Thiriot, A., Akache, B., Krishnan, L., & Stark, F. (2019). Introduction to the immune system. Methods in Molecular Biology, 1-24. https://doi.org/10.1007/978-1-4939-9597-4_1
2. Childs, C. E., Calder, P. C., & Miles, E. A. (2019). Diet and immune function. Nutrients, 11(8), 1933. https://doi.org/10.3390/nu11081933
3. Schroeder, H. W., & Cavacini, L. (2010). Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology, 125(2), S41-S52. https://doi.org/10.1016/j.jaci.2009.09.046
4. Berin, M. C. (2012). Mucosal antibodies in the regulation of tolerance and allergy to foods. Seminars in Immunopathology, 34(5), 633-642. https://doi.org/10.1007/s00281-012-0325-9
5. Saraiva, M., & O'Garra, A. (2010). The regulation of IL-10 production by immune cells. Nature Reviews Immunology, 10(3), 170-181. https://doi.org/10.1038/nri2711
6. Calder, P. C., & Jackson, A. A. (2000). Undernutrition, infection and immune function. Nutrition Research Reviews, 13(1), 3-29. https://doi.org/10.1079/095442200108728981
7. Lee, G. Y., & Han, S. N. (2018). The role of vitamin E in immunity. Nutrients, 10(11), 1614. https://doi.org/10.3390/nu10111614
8. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
9. Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502. https://doi.org/10.1038/nrgastro.2017.75
10. Kamemura, N., Tada, H., Shimojo, N., Morita, Y., Kohno, Y., Ichioka, T., Suzuki, K., Kubota, K., Hiyoshi, M., & Kido, H. (2012). Intrauterine sensitization of allergen-specific Ige analyzed by a highly sensitive new allergen microarray. Journal of Allergy and Clinical Immunology, 130(1), 113-121.e2. https://doi.org/10.1016/j.jaci.2012.02.023
11. Donovan, S. M., & Comstock, S. S. (2016). Human milk Oligosaccharides influence neonatal mucosal and systemic immunity. Annals of Nutrition and Metabolism, 69(Suppl. 2), 41-51. https://doi.org/10.1159/000452818
12. Kim, H., Sitarik, A. R., Woodcroft, K., Johnson, C. C., & Zoratti, E. (2019). Birth mode, breastfeeding, pet exposure, and antibiotic use: Associations with the gut microbiome and sensitization in children. Current Allergy and Asthma Reports, 19(4). https://doi.org/10.1007/s11882-019-0851-9
13. Crooke, S. N., Ovsyannikova, I. G., Poland, G. A., & Kennedy, R. B. (2019). Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Experimental Gerontology, 124, 110632. https://doi.org/10.1016/j.exger.2019.110632
14. Berzins, S. P., Uldrich, A. P., Sutherland, J. S., Gill, J., Miller, J. F., Godfrey, D. I., & Boyd, R. L. (2002). Thymic regeneration: Teaching an old immune system new tricks. Trends in Molecular Medicine, 8(10), 469-476. https://doi.org/10.1016/s1471-4914(02)02415-2
15. Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2005). Counting the zinc-proteins encoded in the human genome. Journal of Proteome Research, 5(1), 196-201. https://doi.org/10.1021/pr050361j
16. Ibs, K., & Rink, L. (2003). Zinc-altered immune function. The Journal of Nutrition, 133(5), 1452S-1456S. https://doi.org/10.1093/jn/133.5.1452s
17. Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256-1268. https://doi.org/10.1016/s0140-6736(11)61452-9
18. Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R., & Newsholme, P. (2018). Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients, 10(11), 1564. https://doi.org/10.3390/nu10111564
19. Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1), 236. https://doi.org/10.3390/nu12010236
20. Salois, M. J., Tiffin, R., & Balcombe, K. G. (2012). Impact of income on nutrient intakes: Implications for undernourishment and obesity. Journal of Development Studies, 48(12), 1716-1730. https://doi.org/10.1080/00220388.2012.658376
21. Han, J. C., Lawlor, D. A., & Kimm, S. Y. (2010). Childhood obesity. The Lancet, 375(9727), 1737-1748. https://doi.org/10.1016/s0140-6736(10)60171-7
22. Scrimshaw, N. S., & Suskind, R. M. (1976). Interactions of nutrition and infection. Dental Clinics of North America, 20(3), 461-472. https://doi.org/10.1016/s0011-8532(22)01017-5
23. Lee, A. H., & Dixit, V. D. (2020). Dietary regulation of immunity. Immunity, 53(3), 510-523. https://doi.org/10.1016/j.immuni.2020.08.013
24. Ebadi, S., & Azlan, A. (2023). The effect of unrefined sugar on inflammation: A systematic review of intervention studies. International Journal of Preventive Medicine, 14(1). https://doi.org/10.4103/ijpvm.ijpvm_318_22
25. Bourke, C. D., Berkley, J. A., & Prendergast, A. J. (2016). Immune dysfunction as a cause and consequence of malnutrition. Trends in Immunology, 37(6), 386-398. https://doi.org/10.1016/j.it.2016.04.003
26. Briend, A., Akomo, P., Bahwere, P., De Pee, S., Dibari, F., Golden, M. H., Manary, M., & Ryan, K. (2015). Developing food supplements for moderately malnourished children: Lessons learned from ready-to-Use therapeutic foods. Food and Nutrition Bulletin, 36(1_suppl1), S53-S58. https://doi.org/10.1177/15648265150361s109
27. Rocha-Ramírez, L. M., Hernández-Ochoa, B., Gómez-Manzo, S., Marcial-Quino, J., Cárdenas-Rodríguez, N., Centeno-Leija, S., & García-Garibay, M. (2020). Impact of heat-killed lactobacillus casei strain IMAU60214 on the immune function of macrophages in malnourished children. Nutrients, 12(8), 2303. https://doi.org/10.3390/nu12082303
28. Nauta, A. J., Ben Amor, K., Knol, J., Garssen, J., & Van der Beek, E. (2013). Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. The American Journal of Clinical Nutrition, 98(2), 586S-593S. https://doi.org/10.3945/ajcn.112.039644
29. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860-867. https://doi.org/10.1038/nature05485
30. Moghaddami, M., James, M., Proudman, S., & Cleland, L. G. (2015). Synovial fluid and plasma n3 long chain polyunsaturated fatty acids in patients with inflammatory arthritis. Prostaglandins, Leukotrienes and Essential Fatty Acids, 97, 7-12. https://doi.org/10.1016/j.plefa.2015.02.005
31. Sand, I. K. (2018). The role of diet in multiple sclerosis: Mechanistic connections and current evidence. Current Nutrition Reports, 7(3), 150-160. https://doi.org/10.1007/s13668-018-0236-z
32. Trotter, A., Anstadt, E., Clark, R. B., Nichols, F., Dwivedi, A., Aung, K., & Cervantes, J. L. (2019). The role of phospholipase A2 in multiple sclerosis: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 27, 206-213. https://doi.org/10.1016/j.msard.2018.10.115
33. Haase, S., Haghikia, A., Gold, R., & Linker, R. A. (2018). Dietary fatty acids and susceptibility to multiple sclerosis. Multiple Sclerosis Journal, 24(1), 12-16. https://doi.org/10.1177/1352458517737372
34. Alpert, P. T. (2017). The role of vitamins and minerals on the immune system. Home Health Care Management & Practice, 29(3), 199-202. https://doi.org/10.1177/1084822317713300
35. Calder, P. C. (2013). Feeding the immune system. Proceedings of the Nutrition Society, 72(3), 299-309. https://doi.org/10.1017/s0029665113001286
36. Chandra, R. (2002). Nutrition and the immune system from birth to old age. European Journal of Clinical Nutrition, 56(S3), S73-S76. https://doi.org/10.1038/sj.ejcn.1601492
37. Shao, T., Verma, H. K., Pande, B., Costanzo, V., Ye, W., Cai, Y., & Bhaskar, L. V. (2021). Physical activity and nutritional influence on immune function: An important strategy to improve immunity and health status. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.751374
38. Caplan, M. (2007). Scientific review: the role of nutrients in immune function of infants and young children emerging evidence for long-chain polyunsaturated fatty acids. https://eprints.soton.ac.uk/152657/
39. Albers, R., Bourdet-Sicard, R., Braun, D., Calder, P. C., Herz, U., Lambert, C., Lenoir-Wijnkoop, I., Méheust, A., Ouwehand, A., Phothirath, P., Sako, T., Salminen, S., Siemensma, A., Van Loveren, H., & Sack, U. (2013). Monitoring immune modulation by nutrition in the general population: Identifying and substantiating effects on human health. British Journal of Nutrition, 110(S2), S1-S30. https://doi.org/10.1017/s0007114513001505
40. Bhaskaram, P. (2002). Micronutrient malnutrition, infection, and immunity: An overview. Nutrition Reviews, 60(suppl_5), S40-S45. https://doi.org/10.1301/00296640260130722
41. Childs, C. E., Calder, P. C., & Miles, E. A. (2019). Diet and immune function. Nutrients, 11(8), 1933. https://doi.org/10.3390/nu11081933
42. Wu, D., Lewis, E. D., Pae, M., & Meydani, S. N. (2019). Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.03160
43. Iddir, M., Brito, A., Dingeo, G., Fernandez Del Campo, S. S., Samouda, H., La Frano, M. R., & Bohn, T. (2020). Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. Nutrients, 12(6), 1562. https://doi.org/10.3390/nu12061562
44. Morales, F., Montserrat-de la Paz, S., Leon, M. J., & Rivero-Pino, F. (2023). Effects of malnutrition on the immune system and infection and the role of nutritional strategies regarding improvements in children’s health status: A literature review. Nutrients, 16(1), 1. https://doi.org/10.3390/nu16010001
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.