Effect of Seed Treatments and Different Levels of Nitrogen on Plant Growth and Seed Yield of Pea (Pisum sativum)
DOI:
https://doi.org/10.70749/ijbr.v3i9.2364Keywords:
Crops of Peas, Rhizobium, Germinator, Nitrogen Fertilizer, Growth of Plants, Seed Production, Sustainable Agriculture.Abstract
A field experiment was carried out at the vegetable farm in the University of Agriculture, Faisalabad, in 2013-2014 to identify the role of different seed treatments (Rhizobium and Germinator) and nitrogen fertilizer level (0, 22.5, and 45 kg/ha) on growth and yield parameters of two pea cultivars (Meteor and Alena). The outcomes indicated that seed treatments and an optimal amount of nitrogen drastically enhanced emergence percentage, plant height, nodulation, and yield features. Rhizobium and Germinator combined to create the best effect in Growth and productivity, proposing a method for sustainable gain in pea yield under low-input conditions. The experiment was replicated three times in a factorial design where the effect was randomized under a randomized complete block design (RCBD). Interactions and treatments showed considerable variations in most of the parameters. Np + Germinator + 45 kg N/ha treatment recorded maximum emergence (69.4%), plant height (75.4 cm), chlorophyll content (16.32 g/mg), biomass (41.5 g) and harvest index (61%), especially in cultivar Meteor. The Rhizobium and Germinator treatment fared not very well on its own. There was a significant synergistic effect between the combined use of bio-fertilizers with nitrogen, giving a significant mean effect on vegetative Growth, yield components, and physiological characteristics of the plants. This practice has the potential to enhance the production of peas in sustainable agricultural systems. The trial compared pea seed inoculation with Rhizobium and Germinator and nitrogen on Growth and yield in the two cultivars. Aggregate treatments particularly enhanced emergence, biomass and seed yield in the field.
Downloads
References
Alaswad, A. A., Oehrle, N. W., & Krishnan, H. B. (2019). Classical soybean (Glycine Max (L.) Merr) symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, reveal contrasting symbiotic phenotype on pigeon pea (Cajanus cajan (L.) Millsp). International Journal of Molecular Sciences, 20(5), 1091.
https://doi.org/10.3390/ijms20051091
Belali, M., Seidavi, A., & Bouyeh, M. (2022). Effects of combined use of thyme powder and aqueous extract on growth performance, carcass and organ characteristics, blood parameters, enzymes, immune system and jejunum morphology in broilers. Journal of the Hellenic Veterinary Medical Society, 73(3), 4465-4476.
https://doi.org/10.12681/jhvms.27469
Boyd, C. E., D'Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., McNevin, A. A., Tacon, A. G., Teletchea, F., Tomasso, J. R., Tucker, C. S., & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633.
https://doi.org/10.1111/jwas.12714
Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306.
https://doi.org/10.3390/agronomy9060306
IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 1(1).
https://doi.org/10.1017/9781009325844
Singh, B. P. (2004). Seed Science and Technology.
https://doi.org/10.1007/978-981-19-5888-5
Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., & Svistoonoff, S. (2020). Roles of Arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10), 370.
https://doi.org/10.3390/d12100370
Giffard, B., Winter, S., Guidoni, S., Nicolai, A., Castaldini, M., Cluzeau, D., Coll, P., Cortet, J., Le Cadre, E., D’Errico, G., Forneck, A., Gagnarli, E., Griesser, M., Guernion, M., Lagomarsino, A., Landi, S., Bissonnais, Y. L., Mania, E., Mocali, S., … Leyer, I. (2022). Vineyard management and its impacts on soil biodiversity, functions, and ecosystem services. Frontiers in Ecology and Evolution, 10.
https://doi.org/10.3389/fevo.2022.850272
Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., & Nain, L. (2021). PGPR mediated alterations in root traits: Way toward sustainable crop production. Frontiers in Sustainable Food Systems, 4.
https://doi.org/10.3389/fsufs.2020.618230
Gulati, A., Ganguly, K., & Wardhan, H. (2022). Agricultural value chains in India. In India studies in business and economics.
https://doi.org/10.1007/978-981-33-4268-2
Hasanuzzaman, M., Josipovic, M., Vidak, M., Lazarević, B., Gunjača, J., Carović-Stanko, K., Jara-Peña, E., Marín-Bravo, M., Joseau, M., Rodriguez, S., Frassoni, J., Sedibe, M., Mofokeng, A., Masvodza, D., Kocjan, D., & Flajšman, M. (2023). Production and Utilization of legumes - Progress and Prospects. In IntechOpen eBooks.
https://doi.org/10.5772/intechopen.104283
Kim, Y., Webber, H., Adiku, S. G., Nóia Júnior, R. D., Deswarte, J., Asseng, S., & Ewert, F. (2024). Mechanisms and modelling approaches for excessive rainfall stress on cereals: Waterlogging, submergence, lodging, pests and diseases. Agricultural and Forest Meteorology, 344, 109819.
https://doi.org/10.1016/j.agrformet.2023.109819
Lu, B., Dao, P., Liu, J., He, Y., & Shang, J. (2020). Recent advances of Hyperspectral imaging technology and applications in agriculture. Remote Sensing, 12(16), 2659.
https://doi.org/10.3390/rs12162659
Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology, 2.
https://doi.org/10.3389/fnano.2020.579954
MUTHUSAMY, Y., Sengodan, K., Arthanari, M., Kandhasamy, R., & Gobianand, K. (2023). Biofertilizer and consortium development: An updated review. Current Agriculture Research Journal, 11(1), 01-17.
https://doi.org/10.12944/carj.11.1.01
Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13(4), 1868.
https://doi.org/10.3390/su13041868
Obluchinskaya, E. D., Pozharitskaya, O. N., Zakharov, D. V., Flisyuk, E. V., Terninko, I. I., Generalova, Y. E., Smekhova, I. E., & Shikov, A. N. (2022). The Biochemical Composition and Antioxidant Properties of Fucus vesiculosus from the Arctic Region. Marine Drugs, 20(3), 193.
https://doi.org/10.3390/md20030193
Fahad, S., Saud, S., Wahid, F., & Adnan, M. (Eds.). (2023). Biofertilizers for Sustainable Soil Management. CRC Press.
Pankaj, U., Babele, P., & Singh, A. K. (2025). Plant-microbiome interactions for climate-resilient agriculture. Springer Nature.
Paul, J., & Barari, M. (2022). Meta‐analysis and traditional systematic literature reviews—What, why, when, where, and how? Psychology and Marketing, 39(6), 1099–1115.
https://doi.org/10.1002/mar.21657
Prasad, M. (2021). Oilseed crops. New India Publishing Agency.
Santamaría-Fernández, M., & Lübeck, M. (2020). Production of leaf protein concentrates in green biorefineries as alternative feed for monogastric animals. Animal Feed Science and Technology, 268, 114605.
https://doi.org/10.1016/j.anifeedsci.2020.114605
Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., Gómez, C., Mattson, N., Nasim, W., & Garcia-Sanchez, F. (2020). Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy, 10(7), 938.
https://doi.org/10.3390/agronomy10070938
Sharma, U. C., Datta, M., & Sharma, V. (2023). Soils in the Hindu kush Himalayas: Management for Agricultural Land Use. Springer Nature.
Sheteiwy, M. S., Ali, D. F. I., Xiong, Y., Brestic, M., Skalicky, M., Hamoud, Y. A., Ulhassan, Z., Shaghaleh, H., AbdElgawad, H., Farooq, M., Sharma, A., & El-Sawah, A. M. (2021). Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biology, 21(1).
https://doi.org/10.1186/s12870-021-02949-z
Sible, C. N., Seebauer, J. R., & Below, F. E. (2021). Plant biostimulants: a categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy, 11(7), 1297.
https://doi.org/10.3390/agronomy11071297
Siddiqui, S. A., Erol, Z., Rugji, J., Taşçı, F., Kahraman, H. A., Toppi, V., Musa, L., Di Giacinto, G., Bahmid, N. A., Mehdizadeh, M., & Castro-Muñoz, R. (2023). An overview of fermentation in the food industry - looking back from a new perspective. Bioresources and Bioprocessing, 10(1).
https://doi.org/10.1186/s40643-023-00702-y
Singh, B. (2018). Are nitrogen fertilizers deleterious to soil health? Agronomy, 8(4), 48.
https://doi.org/10.3390/agronomy8040048
Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Leskovar, D. I. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), 4859.
https://doi.org/10.3390/su12124859
Valenzuela, H. (2024). Optimizing the nitrogen use efficiency in vegetable crops. Nitrogen, 5(1), 106–143.
https://doi.org/10.3390/nitrogen5010008
Yadav, A., Yadav, K., & Abd-Elsalam, K. (2023). Nanofertilizers: Types, delivery and Advantages in Agricultural sustainability. Agrochemicals, 2(2), 296–336.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
