Particulate Matter (PM2.5) Exposure: Implications for Public Health and Respiratory Diseases in Urban and Rural Areas

Authors

  • Syeda Farwa Narjis Naqvi Department of Geography and Environmental Studies, Texas State University, USA.
  • Ali Mushtaq Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
  • Ehtisham Khan Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
  • Aqsa Riaz Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
  • Haris Abdullah Sustainable Development Study Centre, Government College University (GCU), Lahore, Punjab, Pakistan.
  • Rahat Hameed Environment Officer in China Civil Engineering Cooperation, Dasu Dam Project, Pakistan.
  • Mehmood ul Hassan Department of Environmental Sciences, The University of Lahore, Lahore, Punjab, Pakistan.
  • Bilal Ahmed Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i9.2370

Keywords:

Implications for Public Health, Respiratory Diseases, Urban areas, rural areas.

Abstract

Fine particles smaller than 2.5 micrometers, known as particulate matter (PM2.5), are a serious threat to public health worldwide, especially when it comes to respiratory conditions. This review highlights the distinctions between urban and rural settings while synthesizing the most recent data on PM2.5 sources, exposure patterns, and health effects. PM2.5 is mostly produced by automobile emissions, industry, and construction in cities, which results in continuously high concentrations. On the other hand, transboundary pollution frequently makes PM2.5 worse in rural areas, where it is caused by burning biomass, agricultural practices, and seasonal dust. Through processes like oxidative stress, inflammation, and epigenetic modifications, PM2.5 exposure causes both acute respiratory problems like bronchitis and asthma flare-ups as well as chronic illnesses like lung cancer and chronic obstructive pulmonary disease (COPD). While rural communities experience seasonal spikes and substantial indoor pollution from biomass combustion, urban populations are exposed on a chronic basis. Children, the elderly, and low-income groups are among the vulnerable groups that suffer disproportionately. Important discoveries highlight the pressing need for improved air quality monitoring, more stringent laws, and customized interventions to lessen the negative health effects of PM2.5. To improve our understanding of toxicity mechanisms and guide policy, future research should focus on long-term exposure studies, the impact of climate change on PM2.5 dynamics, and integrative techniques like multi-omics. In order to address urban-rural disparities and lessen the effects on global health, sustainable, context-specific solutions are essential.

Downloads

Download data is not yet available.

References

1. Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742.

https://doi.org/10.1080/10473289.2006.10464485

2. Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B., … Spadaro, J. V. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences, 115(38), 9592-9597.

https://doi.org/10.1073/pnas.1803222115

3. Bell, M. L., & Davis, D. L. (2001). Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental Health Perspectives, 109(suppl 3), 389-394.

https://doi.org/10.1289/ehp.01109s3389

4. Kelly, F. J., & Fussell, J. C. (2011). Air pollution and airway disease. Clinical & Experimental Allergy, 41(8), 1059-1071.

https://doi.org/10.1111/j.1365-2222.2011.03776.x

5. Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, Z., Streets, D. G., Ni, R., Brauer, M., Van Donkelaar, A., Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., … Guan, D. (2017). Transboundary health impacts of transported global air pollution and international trade. Nature, 543(7647), 705-709.

https://doi.org/10.1038/nature21712

6. Li, T., Zhang, Y., Wang, J., Xu, D., Yin, Z., Chen, H., Lv, Y., Luo, J., Zeng, Y., Liu, Y., Kinney, P. L., & Shi, X. (2018). All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: A cohort study. The Lancet Public Health, 3(10), e470-e477.

https://doi.org/10.1016/s2468-2667(18)30144-0

7. Smith, K. R., Bruce, N., Balakrishnan, K., Adair-Rohani, H., Balmes, J., Chafe, Z., Dherani, M., Hosgood, H. D., Mehta, S., Pope, D., & Rehfuess, E. (2014). Millions dead: How do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annual Review of Public Health, 35(1), 185-206.

https://doi.org/10.1146/annurev-publhealth-032013-182356

8. Bruce, N., Pope, D., Rehfuess, E., Balakrishnan, K., Adair-Rohani, H., & Dora, C. (2015). WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure–risk functions. Atmospheric Environment, 106, 451-457.

https://doi.org/10.1016/j.atmosenv.2014.08.064

9. Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., … Prévôt, A. S. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218-222.

https://doi.org/10.1038/nature13774

10. Seinfeld, J. H., Pandis, S. N., & Noone, K. (1998). Atmospheric chemistry and physics: From air pollution to climate Change. Physics Today, 51(10), 88-90.

https://doi.org/10.1063/1.882420

11. Burke, M., Driscoll, A., Xue, J., Heft-Neal, S., Burney, J., & Wara, M. (2020). The changing risk and burden of wildfire in the US.

https://doi.org/10.3386/w27423

12. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367-371.

https://doi.org/10.1038/nature15371

13. Kim, K., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.

https://doi.org/10.1016/j.envint.2014.10.005

14. Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. The Lancet, 389(10082), 1907-1918.

https://doi.org/10.1016/s0140-6736(17)30505-6

15. Rodrigo, A. P., & Costa, P. M. (2019). The hidden biotechnological potential of marine invertebrates: The polychaeta case study. Environmental Research, 173, 270-280.

https://doi.org/10.1016/j.envres.2019.03.048

16. Pletcher, B. A., & Turcios, N. L. (2012). Pulmonary complications of genetic disorders. Paediatric Respiratory Reviews, 13(1), 2-9.

https://doi.org/10.1016/j.prrv.2011.01.006

17. Karagulian, F., Belis, C. A., Dora, C. F., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475-483.

https://doi.org/10.1016/j.atmosenv.2015.08.087

18. Viana, M. (Ed.). (2016). Indoor and outdoor nanoparticles: Determinants of release and exposure scenarios (Vol. 48). Springer.

19. Guarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. The Lancet, 383(9928), 1581-1592.

https://doi.org/10.1016/s0140-6736(14)60617-6

20. HYSLOP, N., & WHITE, W. (2008). An evaluation of interagency monitoring of protected visual environments (Improve) collocated precision and uncertainty estimates. Atmospheric Environment, 42(11), 2691-2705.

https://doi.org/10.1016/j.atmosenv.2007.06.053

21. Chafe, Z. A., Brauer, M., Klimont, Z., Van Dingenen, R., Mehta, S., Rao, S., Riahi, K., Dentener, F., & Smith, K. R. (2014). Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease. Environmental Health Perspectives, 122(12), 1314-1320.

https://doi.org/10.1289/ehp.1206340

22. Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016). Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124(9), 1334-1343.

https://doi.org/10.1289/ehp.1409277

23. Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., ... & Pelizzari, P. M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, 380(9859), 2224-2260.

24. Tai, A. P., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976-3984.

https://doi.org/10.1016/j.atmosenv.2010.06.060

25. Zhang, H., Wang, Y., Hu, J., Ying, Q., & Hu, X. (2015). Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 140, 242-254.

https://doi.org/10.1016/j.envres.2015.04.004

26. Huang, Y., Luvsan, M., Gombojav, E., Ochir, C., Bulgan, J., & Chan, C. (2013). Land use patterns and SO2 and NO2 pollution in Ulaanbaatar, Mongolia. Environmental Research, 124, 1-6.

https://doi.org/10.1016/j.envres.2013.02.006

27. Bytnerowicz, A., Omasa, K., & Paoletti, E. (2007). Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective. Environmental Pollution, 147(3), 438-445.

https://doi.org/10.1016/j.envpol.2006.08.028

28. Zhu, X., Lv, M., & Yang, X. (2019). A test-based method for estimating the service life of adsorptive portable air cleaners in removing indoor formaldehyde. Building and Environment, 154, 89-96.

https://doi.org/10.1016/j.buildenv.2019.03.018

29. Logue, J. M., Price, P. N., Sherman, M. H., & Singer, B. C. (2012). A method to estimate the chronic health impact of air pollutants in U.S. residences. Environmental Health Perspectives, 120(2), 216-222.

https://doi.org/10.1289/ehp.1104035

30. Chafe, Z. A., Brauer, M., Klimont, Z., Van Dingenen, R., Mehta, S., Rao, S., Riahi, K., Dentener, F., & Smith, K. R. (2014). Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease. Environmental Health Perspectives, 122(12), 1314-1320.

https://doi.org/10.1289/ehp.1206340

31. Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742.

https://doi.org/10.1080/10473289.2006.10464485

32. Nel, A. (2005). Air pollution-related illness: Effects of particles. Science, 308(5723), 804-806.

https://doi.org/10.1126/science.1108752

33. Pope III, C. A. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132.

https://doi.org/10.1001/jama.287.9.1132

34. Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease. Circulation, 121(21), 2331-2378.

https://doi.org/10.1161/cir.0b013e3181dbece1

35. Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of Ultrafine particles. Environmental Health Perspectives, 113(7), 823-839.

https://doi.org/10.1289/ehp.7339

36. Schwartz, J., & Neas, L. M. (2000). Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology, 11(1), 6-10.

https://doi.org/10.1097/00001648-200001000-00004

37. Kim, K., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.

https://doi.org/10.1016/j.envint.2014.10.005

38. Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37(4), 631-649.

https://doi.org/10.1007/s10653-015-9720-1

39. Wang, C., Xu, J., Yang, L., Xu, Y., Zhang, X., Bai, C., Kang, J., Ran, P., Shen, H., Wen, F., Huang, K., Yao, W., Sun, T., Shan, G., Yang, T., Lin, Y., Wu, S., Zhu, J., Wang, R., … He, J. (2018). Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China pulmonary health [CPH] study): A national cross-sectional study. The Lancet, 391(10131), 1706-1717.

https://doi.org/10.1016/s0140-6736(18)30841-9

40. Valko, M., Rhodes, C., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1-40.

https://doi.org/10.1016/j.cbi.2005.12.009

41. Guarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. The Lancet, 383(9928), 1581-1592.

https://doi.org/10.1016/s0140-6736(14)60617-6

42. Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2011). Clearing the air: A review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 8(2), 166-175.

https://doi.org/10.1007/s13181-011-0203-1

43. Pletcher, B. A., & Turcios, N. L. (2012). Pulmonary complications of genetic disorders. Paediatric Respiratory Reviews, 13(1), 2-9.

https://doi.org/10.1016/j.prrv.2011.01.006

44. Schwartz, J., & Neas, L. M. (2000). Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology, 11(1), 6-10.

https://doi.org/10.1097/00001648-200001000-00004

45. Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37(4), 631-649.

https://doi.org/10.1007/s10653-015-9720-1

46. Wang, C., Xu, J., Yang, L., Xu, Y., Zhang, X., Bai, C., Kang, J., Ran, P., Shen, H., Wen, F., Huang, K., Yao, W., Sun, T., Shan, G., Yang, T., Lin, Y., Wu, S., Zhu, J., Wang, R., … He, J. (2018). Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China pulmonary health [CPH] study): A national cross-sectional study. The Lancet, 391(10131), 1706-1717.

https://doi.org/10.1016/s0140-6736(18)30841-9

47. Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J. M., ... & Loomis, D. (2014). Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environmental health perspectives.

https://doi.org/10.1289/ehp/1408092

48. Gauderman, W. J., Avol, E., Gilliland, F., Vora, H., Thomas, D., Berhane, K., McConnell, R., Kuenzli, N., Lurmann, F., Rappaport, E., Margolis, H., Bates, D., & Peters, J. (2004). The effect of air pollution on lung development from 10 to 18 years of age. New England Journal of Medicine, 351(11), 1057-1067.

https://doi.org/10.1056/nejmoa040610

49. Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease. Circulation, 121(21), 2331-2378.

https://doi.org/10.1161/cir.0b013e3181dbece1

50. Chafe, Z. A., Brauer, M., Klimont, Z., Van Dingenen, R., Mehta, S., Rao, S., Riahi, K., Dentener, F., & Smith, K. R. (2014). Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease. Environmental Health Perspectives, 122(12), 1314-1320.

https://doi.org/10.1289/ehp.1206340

51. Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016). Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124(9), 1334-1343.

https://doi.org/10.1289/ehp.1409277

52. Zanobetti, A. (2006). Air pollution and emergency admissions in Boston, MA. Journal of Epidemiology & Community Health, 60(10), 890-895.

https://doi.org/10.1136/jech.2005.039834

53. Stieb, D. M., Chen, L., Eshoul, M., & Judek, S. (2012). Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environmental Research, 117, 100-111.

https://doi.org/10.1016/j.envres.2012.05.007

54. Schreiber, M. P., & Shorr, A. F. (2019). Inhaled antibiotics for the treatment of pneumonia. Current Opinion in Pulmonary Medicine, 25(3), 289-293.

https://doi.org/10.1097/mcp.0000000000000557

55. Lim, S., Kim, J., Kim, T., Lee, K., Yang, W., Jun, S., & Yu, S. (2012). Personal exposures to PM2.5 and their relationships with microenvironmental concentrations. Atmospheric Environment, 47, 407-412.

https://doi.org/10.1016/j.atmosenv.2011.10.043

56. Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., ... & Borzouei, S. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The lancet, 396(10258), 1223-1249.

https://www.thelancet.com/journals/lancet/article/piis0140-6736(20)30752-2/fulltext

57. OECD. (2016). The Economic Consequences of Outdoor Air Pollution. OECD.

https://www.oecd.org/en/publications/the-economic-consequences-of-outdoor-air-pollution_9789264257474-en.html

58. Van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A., Sayer, A. M., & Winker, D. M. (2016). Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environmental Science & Technology, 50(7), 3762-3772.

https://doi.org/10.1021/acs.est.5b05833

59. Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293-302.

https://doi.org/10.1016/j.envint.2016.12.007

60. Burnett, R. T., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., … Cohen, A. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397-403.

https://doi.org/10.1289/ehp.1307049

61. Watts, M. J., Maseka, K. K., Mutondo, M., Sakala, G., & Olatunji, A. S. (2019). Preface for special issue: Geochemistry for sustainable development. Environmental Geochemistry and Health, 42(4), 1045-1046.

https://doi.org/10.1007/s10653-019-00440-1

62. Jacobson, M. Z. (2002). Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research, 107(D19).

https://doi.org/10.1029/2001jd001376

63. Lai, H., Kendall, M., Ferrier, H., Lindup, I., Alm, S., Hänninen, O., Jantunen, M., Mathys, P., Colvile, R., Ashmore, M., Cullinan, P., & Nieuwenhuijsen, M. (2004). Personal exposures and microenvironment concentrations of pm2.5, VOC, no2 and Co in Oxford, UK. Atmospheric Environment, 38(37), 6399-6410.

https://doi.org/10.1016/j.atmosenv.2004.07.013

64. Schreiber, M. P., & Shorr, A. F. (2019). Inhaled antibiotics for the treatment of pneumonia. Current Opinion in Pulmonary Medicine, 25(3), 289-293.

https://doi.org/10.1097/mcp.0000000000000557

65. Gauderman, W. J., Urman, R., Avol, E., Berhane, K., McConnell, R., Rappaport, E., Chang, R., Lurmann, F., & Gilliland, F. (2015). Association of improved air quality with lung development in children. New England Journal of Medicine, 372(10), 905-913.

https://doi.org/10.1056/nejmoa1414123

66. Silva, R. A., Adelman, Z., Fry, M. M., & West, J. J. (2016). The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environmental Health Perspectives, 124(11), 1776-1784.

https://doi.org/10.1289/ehp177

67. Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51-63.

https://doi.org/10.1016/j.atmosenv.2008.09.051

68. Li, X., Fan, X., Yin, X., Liu, H., & Yang, Y. (2020). Alteration of N6 -Methyladenosine Epitranscriptome Profile in Unilateral Ureteral Obstructive Nephropathy. Epigenomics, 12(14), 1157-1173.

https://doi.org/10.2217/epi-2020-0126

69. Rider, C. F., & Carlsten, C. (2019). Air pollution and DNA methylation: Effects of exposure in humans. Clinical Epigenetics, 11(1).

https://doi.org/10.1186/s13148-019-0713-2

70. Wild, C. P. (2012). The exposome: From concept to utility. International Journal of Epidemiology, 41(1), 24-32.

https://doi.org/10.1093/ije/dyr236

71. Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S., Jayaratne, R., Kumar, P., Lau, A. K., Louie, P. K., Mazaheri, M., Ning, Z., Motta, N., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116, 286-299.

https://doi.org/10.1016/j.envint.2018.04.018

72. Checkley, W., Pollard, S. L., Siddharthan, T., Babu, G. R., Thakur, M., Miele, C. H., & Van Schayck, O. C. (2016). Managing threats to respiratory health in urban slums. The Lancet Respiratory Medicine, 4(11), 852-854.

https://doi.org/10.1016/s2213-2600(16)30245-4

73. Urák, I., Hartel, T., Gallé, R., & Balog, A. (2017). Worldwide peatland degradations and the related carbon dioxide emissions: The importance of policy regulations. Environmental Science & Policy, 69, 57-64.

https://doi.org/10.1016/j.envsci.2016.12.012

74. Bellinger, C., Mohomed Jabbar, M. S., Zaïane, O., & Osornio-Vargas, A. (2017). A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health, 17(1).

https://doi.org/10.1186/s12889-017-4914-3

75. Orru, H., Ebi, K. L., & Forsberg, B. (2017). The interplay of climate change and air pollution on health. Current Environmental Health Reports, 4(4), 504-513.

https://doi.org/10.1007/s40572-017-0168-6

76. Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, Z., Streets, D. G., Ni, R., Brauer, M., Van Donkelaar, A., Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., … Guan, D. (2017). Transboundary health impacts of transported global air pollution and international trade. Nature, 543(7647), 705-709.

https://doi.org/10.1038/nature21712

Downloads

Published

2025-09-30

How to Cite

Narjis Naqvi, S. F., Mushtaq, A., Khan, E., Riaz, A., Abdullah, H., Hameed, R., Mehmood ul Hassan, & Ahmed, B. (2025). Particulate Matter (PM2.5) Exposure: Implications for Public Health and Respiratory Diseases in Urban and Rural Areas. Indus Journal of Bioscience Research, 3(9), 222-229. https://doi.org/10.70749/ijbr.v3i9.2370