A Comprehensive Study of BTD: Total Reported Variants, In-silico Analyses and Overview of Functional Studies
DOI:
https://doi.org/10.70749/ijbr.v3i10.2372Keywords:
Biotin Metabolism, Biotinidase Deficiency, BTD Variants, Functional Study of BTD, In-silico analysis, PathogenicityAbstract
BTD encodes the biotinidase enzyme, responsible for recycling and maintaining biotin homeostasis in the human body. Biotin is a water-soluble micronutrient essential for various metabolic processes, with most being recycled by the biotinidase enzyme under normal physiological conditions. The process involves Holocarboxylase synthetase covalently attaching free biotin to Apocarboxylases, such as pyruvate carboxylase, 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase, and acetyl-CoA carboxylase, forming active Holocarboxylases. These active forms are then proteolyzed into biocytin and/or biotin peptides, which are subsequently cleaved by biotinidase enzyme, thus completing the biotin recycling loop. Variants within BTD disrupt the catalytic activity of biotinidase, leading to an inability to recycle biotin. Biotinidase deficiency, an autosomal recessive inherited metabolic disorder, can result from this disruption, causing the accumulation of biotin metabolites and subsequent damage to the peripheral and central nervous systems. The objective of this study was to analyze BTD variants and assess their structural, functional, and clinical significance in biotinidase deficiency. This study presents a comprehensive analysis of BTD variants, identifying a total of 740 reported variants, with exon 4 being a significant hotspot with 452 variants, indicating its potential importance for future genetic screening and diagnostic strategies. The research further provides an in-silico analysis of the BTD proteins, detailing their pathogenicity, domain structure, conserved regions, and key amino acids involved in interaction and structural integrity. Functional studies utilizing animal models demonstrate that BTD knockout adversely affects physiological features and metabolic pathways, with these effects being reversible upon biotin supplementation.
Downloads
References
1. Ijaz, T., Rashid, A., Ghouri, F., Ali, A., Malik, A., Naeem Khan, A., Mustafa, M., & Rashid, A. (2025). Maternal awareness and misconceptions about genetic disorders: A cross-sectional study among mothers of affected children at PIMS hospital, Islamabad. Journal of Basic & Clinical Medical Sciences, 4, 33-43.
https://doi.org/10.58398/0002.000024
2. Sajid, S., Laraib, F., Rashid, A., Arshad, A., Ahmad, N., & Rashid, A. (2025). Exploring Pakistani doctors' perspectives on genetic counseling: Challenges and opportunities. Journal of Medical & Health Sciences Review, 2(1).
https://doi.org/10.62019/nzbf4q93
3. León‐Del‐Río, A. (2019). Biotin in metabolism, gene expression, and human disease. Journal of Inherited Metabolic Disease, 42(4), 647-654.
https://doi.org/10.1002/jimd.12073
4. Forny, P., Burda, P., Bode, P., & Rohrbach, M. (2020). Is serum biotinidase enzyme activity a potential marker of perturbed glucose and lipid metabolism? JIMD Reports, 57(1), 58-66.
https://doi.org/10.1002/jmd2.12168
5. Forny, P., Wicht, A., Rüfenacht, V., Cremonesi, A., & Häberle, J. (2022). Recovery of enzyme activity in biotinidase deficient individuals during early childhood. Journal of Inherited Metabolic Disease, 45(3), 605-620.
https://doi.org/10.1002/jimd.12490
6. Kannan, B., Navamani, H. K., Jayaseelan, V. P., & Arumugam, P. (2022). A rare Biotinidase deficiency in the pediatrics population: Genotype–phenotype analysis. Journal of Pediatric Genetics, 12(01), 001-015.
https://doi.org/10.1055/s-0042-1757887
7. Cicalini, I., Pieragostino, D., Rizzo, C., Verrocchio, S., Semeraro, D., Zucchelli, M., Di Michele, S., Dionisi-Vici, C., Stuppia, L., De Laurenzi, V., Bucci, I., & Rossi, C. (2021). Partial Biotinidase deficiency revealed imbalances in Acylcarnitines profile at tandem mass spectrometry newborn screening. International Journal of Environmental Research and Public Health, 18(4), 1659.
https://doi.org/10.3390/ijerph18041659
8. Geng, J., Sun, Y., Zhao, Y., Xiong, W., Zhong, M., Zhang, Y., Zhao, Q., Bao, Z., Cheng, J., Lu, Y., & Yuan, H. (2021). Two novel BTD mutations causing profound biotinidase deficiency in a Chinese patient. Molecular Genetics & Genomic Medicine, 9(2).
https://doi.org/10.1002/mgg3.1591
9. Hamad, R., Saif, R., Khalid, r., Ibrahim, M., & Elmula, I. (2025). Profound Biotinidase deficiency caused by (D444H) resulting in recurrent early childhood death in a sudanese family. Journal of Medical Research and Reviews, (0), 1.
https://doi.org/10.5455/jmrr.20241019032519
10. Göksoy, E. (2023). Evaluation of newborn screening for biotinidase deficiency from southeastern region of Türkiye. Trends in Pediatrics, 4(4), 247-252.
https://doi.org/10.59213/tp.2023.07769
11. Destanoğlu, O., Cansever, M. Ş., İşat, E., Zübarioğlu, T., Aktuğlu Zeybek, A. Ç., & Kıykım, E. (2023). Analysis of Biotinidase activity in serum by digital imaging colorimetry detection. ACS Omega, 8(42), 39796-39806.
https://doi.org/10.1021/acsomega.3c05759
12. Karaoglan, M., Nacarkahya, G., Aytac, E. H., & Keskin, M. (2021). The course of Biotinidase activities after neonatal period in the screened newborns and consequences of the concordance with their genotypes.
https://doi.org/10.21203/rs.3.rs-1004063/v1
13. Ahram, M., Aladawi, M., Dwekat, O., Zaghlol, L., Al Bdour, S., & Masri, A. (2022). Measurement of biotinidase activity using dried blood spots by a spectrophotometric assay. biochimica clinica, 46(1), 35.
https://biochimicaclinica.it/wp-content/uploads/2023/02/pag_34-38-Ahram-40-21.pdf
14. Mardhiah, M., Azize, N. A., Yakob, Y., Affandi, O., Hock, N. L., Rowani, M., & Habib, A. (2020). Clinical, biochemical and mutational findings in biotinidase deficiency among Malaysian population. Molecular Genetics and Metabolism Reports, 22, 100548.
https://doi.org/10.1016/j.ymgmr.2019.100548
15. Sharma, R., Kucera, C. R., Nery, C. R., Lacbawan, F. L., Salazar, D., & Tanpaiboon, P. (2024). Biotinidase biochemical and molecular analyses: Experience at a large reference laboratory. Pediatrics International, 66(1).
https://doi.org/10.1111/ped.15726
16. Kilic, A. K., & Suzan, A. A. (2024). Evaluation of adult Biotinidase activity in patients with idiopathic inflammatory demyelinating diseases. Neurochemical Journal, 18(1), 201-206.
https://doi.org/10.1134/s1819712424010124
17. Paul, E. R., Manuel, D., Shajahan, R. A., U., J., & Chacko, A. A. (2023). Biotinidase deficiency: A novel phenotype from a tertiary care centre. International Journal of Contemporary Pediatrics, 11(1), 64-67.
https://doi.org/10.18203/2349-3291.ijcp20233961
18. Arslan, M., Özbaş, H., Karakoç, Ş., & Karataş, M. R. (2023). A patient diagnosed with Li-Campeau syndrome and Biotinidase deficiency. The Journal of Pediatric Academy.
https://doi.org/10.4274/jpea.2022.221
19. Gilson, A. I., Marshall-Christensen, A., Choi, J., & Shakhnovich, E. I. (2017). The role of evolutionary selection in the dynamics of protein structure evolution. Biophysical Journal, 112(7), 1350-1365.
https://doi.org/10.1016/j.bpj.2017.02.029
20. Forny, P., Wicht, A., Rüfenacht, V., Cremonesi, A., & Häberle, J. (2022). Recovery of enzyme activity in biotinidase deficient individuals during early childhood. Journal of Inherited Metabolic Disease, 45(3), 605-620.
https://doi.org/10.1002/jimd.12490
21. Pindolia, K., Jordan, M., & Wolf, B. (2010). Analysis of mutations causing biotinidase deficiencya. Human Mutation, 31(9), 983-991.
https://doi.org/10.1002/humu.21303
22. Yang, Y., Yang, J., & Chen, X. (2020). Biotinidase deficiency characterized by skin and hair findings. Clinics in Dermatology, 38(4), 477-483.
https://doi.org/10.1016/j.clindermatol.2020.03.004
23. Castellino, A., Kurkure, R., Rayamajhi, P., & Kameswaran, M. (2020). Cochlear implantation in Biotinidase enzyme deficiency. Indian Journal of Otolaryngology and Head & Neck Surgery, 74(S1), 316-319.
https://doi.org/10.1007/s12070-020-02105-3
24. Karachaliou, C., & Livaniou, E. (2024). Biotin homeostasis and human disorders: Recent findings and perspectives. International Journal of Molecular Sciences, 25(12), 6578.
https://doi.org/10.3390/ijms25126578
25. Ma, D., Du, G., Fang, H., Li, R., & Zhang, D. (2024). Advances and prospects in microbial production of biotin. Microbial Cell Factories, 23(1).
https://doi.org/10.1186/s12934-024-02413-1
26. Nagarathna, J., Srinath, S., Akula, S., Balan, B., & Divya, R. (2020). Dental manifestations of a child with biotinidase deficiency: A rare case report. Pediatric Dental Journal, 30(2), 120-123.
https://doi.org/10.1016/j.pdj.2020.03.001
27. Devanapalli, B., Sze Hui Wong, R., Lim, N., Ian Andrews, P., Vijayan, K., Kim, W., Wotton, T., Tantsis, E., Ranieri, E., Ayper Tolun, A., & Balasubramaniam, S. (2024). Biotinidase deficiency: A treatable neurometabolic disorder. Brain and Development Case Reports, 2(2), 100021.
https://doi.org/10.1016/j.bdcasr.2024.100021
28. Gowda, V. K., Kerur, C., Vamyanmane, D. K., Kumar, P., Nagarajappa, V. H., & Shivappa, S. K. (2020). A treatable cause of Myelopathy: Biotinidase deficiency presenting as acute flaccid paralysis. Journal of Pediatric Genetics, 11(03), 257-260.
https://doi.org/10.1055/s-0040-1718537
29. Sakurai-Yageta, M., & Suzuki, Y. (2024). Molecular mechanisms of biotin in modulating inflammatory diseases. Nutrients, 16(15), 2444.
https://doi.org/10.3390/nu16152444
30. Lai, Y., Reina-Gonzalez, P., Maor, G., Miller, G. W., & Sarkar, S. (2025). Biotin mitigates the development of manganese-induced, Parkinson’s disease–related neurotoxicity in Drosophila and human neurons. Science Signaling, 18(870).
https://doi.org/10.1126/scisignal.adn9868
31. Karaoglan, M., Nacarkahya, G., Keskin, M., & Keskin, O. (2020). Immunophenotypic analysis of lymphocyte subsets in newborns with biotinidase deficiency. Pediatric Allergy and Immunology, 32(3), 586-598.
https://doi.org/10.1111/pai.13416
32. Streit, W. R., & Entcheva, P. (2002). Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Applied Microbiology and Biotechnology, 61(1), 21-31.
https://doi.org/10.1007/s00253-002-1186-2
33. Javed, I., Wasim, M., Khan, H. N., & Sultan, T. (2024). Exploring treatment potential: Clinical and genetic insights into Biotinidase deficiency in six patients: A tertiary care hospital experience. Neurochemical Journal, 18(4), 878-885.
https://doi.org/10.1134/s1819712424700521
34. Ali, F., Mukhtiar, K., Raza, M., & Ibrahim, S. (2024). Atypical presentation of biotinidase deficiency: Masquerading neuromyelitis optica spectrum disorder. BMJ Case Reports, 17(7), e258703.
https://doi.org/10.1136/bcr-2023-258703
35. Moatter, T., Ahmed, S., Majid, H., Jafri, L., Bilal, M., Najumuddin, Faisal, & Khan, A. H. (2023). Sequence variants in BTD underlying biotinidase deficiency in families of Pakistani origin. The Journal of Gene Medicine, 26(1).
https://doi.org/10.1002/jgm.3597
36. Yılmaz, B., Ceylan, A. C., Gündüz, M., Ünal Uzun, Ö., Küçükcongar Yavaş, A., Bilginer Gürbüz, B., Öncül, Ü., Güleç Ceylan, G., & Kasapkara, Ç. S. (2023). Evaluation of clinical, laboratory, and molecular genetic features of patients with biotinidase deficiency. European Journal of Pediatrics, 183(3), 1341-1351.
https://doi.org/10.1007/s00431-023-05376-4
37. Mohite, K., Nair, K. V., Sapare, A., Bhat, V., Shukla, A., Kekatpure, M., & Patil, S. J. (2022). Late onset subacute profound biotinidase deficiency caused by a novel homozygous variant c. 466-3T> G in BTD. Indian Journal of Pediatrics, 89(6), 594-596.
https://doi.org/10.1007/s12098-021-04000-3
38. Semeraro, D., Verrocchio, S., Di Dalmazi, G., Rossi, C., Pieragostino, D., Cicalini, I., Ferrante, R., Di Michele, S., Stuppia, L., Rizzo, C., Lepri, F. R., Novelli, A., Dionisi-Vici, C., De Laurenzi, V., & Bucci, I. (2022). High incidence of partial Biotinidase deficiency in the first 3 years of a regional newborn screening program in Italy. International Journal of Environmental Research and Public Health, 19(13), 8141.
https://doi.org/10.3390/ijerph19138141
39. Çıkı, K., Alavanda, C., Ceylan, E. İ., Tanyalçın, T., & Kılavuz, S. (2024). Comprehensive analysis of genotypic and phenotypic characteristics of biotinidase deficiency patients in the eastern region of Türkiye. The Turkish Journal of Pediatrics, 66(5), 608-617.
https://doi.org/10.24953/turkjpediatr.2024.5075
40. Oz, M. Karaca, N. Atas, A. Gonel, and M. Ercan, "BTD mutations in biotinidase deficiency: genotype-phenotype correlation," J Coll Physicians Surg Pak, vol. 30, no. 7, pp. 780-785, 2021.
https://doi.org/10.29271/jcpsp.2021.07.780
41. Shah, S., Khan, N., Lakshmanan, R., Lewis, B., & Nagarajan, L. (2020). Biotinidase deficiency presenting as neuromyelitis optica spectrum disorder. Brain and Development, 42(10), 762-766.
https://doi.org/10.1016/j.braindev.2020.07.007
42. Cicalini, I., Pieragostino, D., Rizzo, C., Verrocchio, S., Semeraro, D., Zucchelli, M., Di Michele, S., Dionisi-Vici, C., Stuppia, L., De Laurenzi, V., Bucci, I., & Rossi, C. (2021). Partial Biotinidase deficiency revealed imbalances in Acylcarnitines profile at tandem mass spectrometry newborn screening. International Journal of Environmental Research and Public Health, 18(4), 1659.
https://doi.org/10.3390/ijerph18041659
43. Lowry, J., Schlachetzki, Z., Burns, B., Varadarajan, A., Thomas, B., Wang, R., Chekalin, E., Albay, J., Shinawi, M., Grange, D., Taft, R., Perry, D., & Kesari, A. (2025). P412: An atypical case of pseudohypoparathyroidism 1b due to uniparental hetero- and isodisomy detected by genome sequencing. Genetics in Medicine Open, 3, 103279.
https://doi.org/10.1016/j.gimo.2025.103279
44. Erdol, S., Kocak, T. A., & Bilgin, H. (2023). Evaluation of 700 patients referred with a preliminary diagnosis of biotinidase deficiency by the national newborn metabolic screening program: A single-center experience. Journal of Pediatric Endocrinology and Metabolism, 36(6), 555-560.
https://doi.org/10.1515/jpem-2023-0003
45. Kulu, B., Kısa, P. T., Yıldız, S., Pekuz, Ö. K., Bilen, M., Er, E., & Arslan, N. (2025). Opening Pandora’s box: Incidental findings among infants referred from neonatal screening for metabolic disorders.
https://doi.org/10.21203/rs.3.rs-6277306/v1
46. Nasehi, m. M., Karimzadeh, P., Tabrizi, A., & Babaei, M. (2022). A girl with Myelopathy and vision loss, misdiagnosis as neuromyelitis optica spectrum disorder: The first Iranian case report on Biotinidase deficiency. Iranian Journal of Pediatrics, 32(4).
https://doi.org/10.5812/ijp-120498
47. Shribman, S., Reid, E., Crosby, A. H., Houlden, H., & Warner, T. T. (2019). Hereditary spastic paraplegia: From diagnosis to emerging therapeutic approaches. The Lancet Neurology, 18(12), 1136-1146.
https://doi.org/10.1016/s1474-4422(19)30235-2
48. Ramesh, R., & Rajendran, S. (2024). Alopecia, dermatitis and seizures since infancy: A case of Biotinidase deficiency. Indian Pediatrics Case Reports, 4(1), 32-35.
https://doi.org/10.4103/ipcares.ipcares_155_23
49. Mishra, R., Gupta, M. B., Mukherjee, S. B., Lomash, A., Gupta, S., & Kapoor, S. (2022). Biotin supplementation in children with symptomatic profound Biotinidase deficiency and their pregnant mothers. Indian Pediatrics Case Reports, 2(1), 12-16.
https://doi.org/10.4103/ipcares.ipcares_12_22
50. Hernández-Vázquez, A., Wolf, B., Pindolia, K., Ortega-Cuellar, D., Hernández-González, R., Heredia-Antúnez, A., Ibarra-González, I., & Velázquez-Arellano, A. (2013). Biotinidase knockout mice show cellular energy deficit and altered carbon metabolism gene expression similar to that of nutritional biotin deprivation: Clues for the pathogenesis in the human inherited disorder. Molecular Genetics and Metabolism, 110(3), 248-254.
https://doi.org/10.1016/j.ymgme.2013.08.018
51. Maheras, K. J., Pindolia, K., Wolf, B., & Gow, A. (2017). Developmental window of sensorineural deafness in biotinidase‐deficient mice. Journal of Inherited Metabolic Disease, 40(5), 733-744.
https://doi.org/10.1007/s10545-017-0049-z
52. Pindolia, K., Chen, J., Cardwell, C., Cui, X., Chopp, M., & Wolf, B. (2012). Neurological deficits in mice with profound biotinidase deficiency are associated with demylination and axonal degeneration. Neurobiology of Disease, 47(3), 428-435.
https://doi.org/10.1016/j.nbd.2012.04.016
53. Pindolia, K., Jordan, M., Guo, C., Matthews, N., Mock, D. M., Strovel, E., Blitzer, M., & Wolf, B. (2011). Development and characterization of a mouse with profound biotinidase deficiency: A biotin-responsive neurocutaneous disorder. Molecular Genetics and Metabolism, 102(2), 161-169.
https://doi.org/10.1016/j.ymgme.2010.10.005
54. Brigolin, C., McKenty, N., Pindolia, K., & Wolf, B. (2016). Differential gene expression during early development in brains of wildtype and biotinidase-deficient mice. Molecular Genetics and Metabolism Reports, 9, 35-41.
https://doi.org/10.1016/j.ymgmr.2016.09.007
55. Báez-Saldaña, A., & Ortega, E. (2004). Biotin deficiency blocks thymocyte maturation, accelerates thymus involution, and decreases nose-rump length in mice. The Journal of Nutrition, 134(8), 1970-1977.
https://doi.org/10.1093/jn/134.8.1970
56. Sadri, M., Wang, H., Kuroishi, T., Li, Y., & Zempleni, J. (2022). Holocarboxylase synthetase knockout is embryonic lethal in mice. PLOS ONE, 17(4), e0265539.
https://doi.org/10.1371/journal.pone.0265539
57. Pérez-Palma, E., Gramm, M., Nürnberg, P., May, P., & Lal, D. (2019). Simple ClinVar: An interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database. Nucleic Acids Research, 47(W1), W99-W105.
https://doi.org/10.1093/nar/gkz411
58. Khanam, A., Hridoy, H. M., Alam, M. S., Sultana, A., & Hasan, I. (2024). An immunoinformatics approach for a potential NY-ESO-1 and WT1 based multi-epitope vaccine designing against triple-negative breast cancer. Heliyon, 10(17), e36935.
https://doi.org/10.1016/j.heliyon.2024.e36935
59. You, R., & Jia, Z. (2024). Pathophysiological role of Na–CL cotransporter in kidneys, blood pressure, and metabolism. Human Cell, 37(5), 1306-1315.
https://doi.org/10.1007/s13577-024-01099-2
60. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.
https://doi.org/10.1038/s41586-021-03819-2
61. H. Ashkenazy et al., "ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules," Nucleic acids research, vol. 44, no. W1, pp. W344-W350, 2016.
https://doi.org/10.1093/nar/gkw408
62. Armon, A., Graur, D., & Ben-Tal, N. (2001). ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Journal of Molecular Biology, 307(1), 447–463.
https://doi.org/10.1006/jmbi.2000.4474
63. The UniProt Consortium. (2018). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
https://doi.org/10.1093/nar/gky1049
64. Sürücü Kara, İ., Köse, E., Koç Yekedüz, M., & Eminoğlu, F. T. (2023). A different approach to the evaluation of the genotype-phenotype relationship in biotinidase deficiency: repeated measurement of biotinidase enzyme activity. Journal of Pediatric Endocrinology and Metabolism, 36(11), 1061–1071.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.