Dissolution Enhancement, Formulation Development and Evaluation of Nimesulide SR Tablets
DOI:
https://doi.org/10.70749/ijbr.v3i10.2397Keywords:
Nimesulide; Sustained release, Hydroxypropyl Methylcellulose K15 (HPMC K15), Box–Behnken design, Dissolution Enhancement, Matrix tablets, Pharmacokinetics.Abstract
The present study aimed to develop and optimize sustained-release (SR) matrix tablets of Nimesulide, a poorly water-soluble NSAID, using HPMC K15 as a hydrophilic polymer to enhance dissolution and prolong drug release. A Box-Behnken design was employed to optimize the formulation by varying concentrations of HPMC K15, Avicel, and magnesium stearate, with hardness and cumulative drug release at 12 hours as key response variables. The optimized formulation (F3) exhibited excellent micromeritic properties, achieving 93.08% drug release over 12 hours, following zero-order kinetics (R² > 0.99) with a super case-II transport mechanism, indicating diffusion-controlled release. Solid dispersion techniques using Soluplus significantly improved the solubility of Nimesulide, BCS Class II drug. Compatibility studies (FTIR, SEM) confirmed no drug-polymer interactions, while accelerated stability studies (40°C, 75% RH for 6 months) demonstrated no significant changes in physicochemical properties. The developed SR tablets complied with pharmacopeial standards for hardness, friability, weight variation, and drug content, offering a cost-effective, stable, and patient-compatible alternative to conventional dosage forms. Pharmacokinetic evaluation revealed that the SR formulation (F3) exhibited prolonged Tmax (6.5 hrs), extended half-life (12.5hrs), and higher AUC (825.8ng·hr/mL) compared to immediate-release formulations, ensuring sustained therapeutic levels with reduced dosing frequency. This study highlights the successful application of Quality-by-Design (QbD) principles in formulating a robust SR system for Nimesulide, potentially minimizing adverse effects while improving bioavailability and patient -compatible.
Downloads
References
1. Yunus, M.H.M., A. Nordin, and H. Kamal, Pathophysiological Perspective of Osteoarthritis. Medicina (Kaunas), 2020. 56(11).
https://doi.org/10.3390/medicina56110614
2. Abramoff, B. and F.E. Caldera, Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am, 2020. 104(2): p. 293-311.
https://doi.org/10.1016/j.mcna.2019.10.007
3. Primorac, D., et al., Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel), 2020. 11(8).
https://doi.org/10.3390/genes11080854
4. Langworthy, M., V. Dasa, and A.I. Spitzer, Knee osteoarthritis: disease burden, available treatments, and emerging options. Ther Adv Musculoskelet Dis, 2024. 16: p. 1759720x241273009.
https://doi.org/10.1177/1759720x241273009
5. Patil, S., et al., A Comparative Analysis of the Efficacy and Safety of Nimesulide/Paracetamol Fixed-Dose Combination With Other NSAIDs in Acute Pain Management: A Randomized, Prospective, Multicenter, Active-Controlled Study (the SAFE-2 Study). Cureus, 2024. 16(4): p. e58859.
6. Nyamba, I., et al., Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2024. 204: p. 114513.
https://doi.org/10.1016/j.ejpb.2024.114513
7. Reddy, K.R., S. Mutalik, and S. Reddy, Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS pharmscitech, 2003. 4(4): p. 61.
https://doi.org/10.1208/pt040461
8. Patel, D. and M. Suryawanshi, Applications of Natural Polymers in Controlled-Release Systems. Innovative Pharmaceutical Excipients: Natural Sources, 2025: p. 249.
https://doi.org/10.1007/978-981-96-7959-1_11
9. Vora, L.K., et al., Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics, 2023. 15(7): p. 1916.
https://doi.org/10.3390/pharmaceutics15071916
10. Akhlaq, M., et al., Formulation and in-vitro evaluation of Flurbiprofen controlled release matrix tablets using cellulose derivative polymers. Pak. J. Pharm. Sci, 2010. 23: p. 23-29.
11. Veronica, N., P.W.S. Heng, and C.V. Liew, Alginate-based matrix tablets for drug delivery. Expert Opinion on Drug Delivery, 2023. 20(1): p. 115-130.
https://doi.org/10.1080/17425247.2023.2158183
12. Mori, D., et al., Polymers used in pharmaceutical industry for oral delivery: insight to synthesis, structure–activity relationship, and recent applications. Polymer Bulletin, 2024. 81(18): p. 16373-16413.
https://doi.org/10.1007/s00289-024-05509-1
13. Khan, N.A., et al., Preparation and characterization of hydrophilic polymer based sustained-release matrix tablets of a high dose hydrophobic drug. Polymers, 2022. 14(10): p. 1985.
https://doi.org/10.3390/polym14101985
14. Ezike, T.C., et al., Advances in drug delivery systems, challenges and future directions. Heliyon, 2023. 9(6).
https://doi.org/10.1016/j.heliyon.2023.e17488
15. Hernandez-Garcia, L., A. Rojas-Hernandez, and A. Galano, Mangiferin/β-cyclodextrin complex: determination of the Inclusion constant in aqueous solution by Higuchi–Connors method and molecular absorption and photoluminescence UV spectroscopies at pH 3.4. Chemical Papers, 2022. 76(11): p. 7123-7132.
https://doi.org/10.1007/s11696-022-02381-z
16. Madrid, M.A., et al., Determination of the angle of repose and coefficient of rolling friction for wood pellets. Agronomy, 2022. 12(2): p. 424.
https://doi.org/10.3390/agronomy12020424
17. Tanner, T., Evaluating mechanical properties and tabletability of pharmaceutical powders with a novel gravitation-based high-velocity compaction method. University of Helsinki, 2021.
https://doi.org/10.1016/j.ijpharm.2017.04.039
18. Ibrahim, M.F., et al., Preparation and characterization of atropine sulfate orodispersible tablets. Al-Azhar Journal of Pharmaceutical Sciences, 2023. 68(2): p. 43-63.
https://doi.org/10.21608/ajps.2023.332166
19. Dhanasekaran, A., et al., A Comparative Pharmaceutical Study Of Generic And Branded Tablet’s Quality Control Tests According To Pharmacopoeias. European Journal of Biomedical, 2023. 10(7): p. 154-158.
20. Chandran, S., et al., New Ultraviolet spectrophotometric method for the estimation of nimesulide. Drug Dev Ind Pharm, 2000. 26(2): p. 229-34.
https://doi.org/10.1081/ddc-100100350
21. Khan, K.A., et al., Formulation and preparation of losartan-potassium-loaded controlled-release matrices using Ethocel grade 10 to establish a correlation between in vitro and in vivo results. Pharmaceutics, 2024. 16(2): p. 186.
https://doi.org/10.3390/pharmaceutics16020186
22. Vidyadhara, S., P. Rama Rao, and J. Prasad, Formulation and evaluation of propranolol hydrochloride oral controlled release matrix tablets. Indian journal of pharmaceutical sciences, 2004. 66(2): p. 188-192.
23. Römerová, S., O. Dammer, and P. Zámostný, Development of an Image-based Method for Tablet Microstructure Description and Its Correlation with API Release Rate. AAPS PharmSciTech, 2023. 24(7): p. 199.
https://doi.org/10.1208/s12249-023-02658-w
24. Revision, U.S.P.C.C.o. The United States Pharmacopeia. 1985. United States Pharmacopeial Convention, Incorporated.
25. Singla, A.K., M. Chawla, and A. Singh, Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug development and industrial pharmacy, 2000. 26(9): p. 913-924.
https://doi.org/10.1081/ddc-100101318
26. Krishnamurthi, S., et al., Description of Paenisporosarcina quisquiliarum gen. nov., sp. nov., and reclassification of Sporosarcina macmurdoensis Reddy et al. 2003 as Paenisporosarcina macmurdoensis comb. nov. International journal of systematic and evolutionary microbiology, 2009. 59(6): p. 1364-1370.
https://doi.org/10.1099/ijs.0.65130-0
27. Reddy, C., R. Ghai, and V.C. Kalia, Polyhydroxyalkanoates: an overview. Bioresource technology, 2003. 87(2): p. 137-146.
https://doi.org/10.1016/s0960-8524(02)00212-2
28. Singla, A.K., M. Chawla, and A. Singh, Review nimesulide: Some pharmaceutical and pharmacological aspects—An update. Journal of pharmacy and pharmacology, 2000. 52(5): p. 467-486.
https://doi.org/10.1211/0022357001774255
29. Kaleemullah, M., et al., Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage. Saudi Pharm J, 2017. 25(5): p. 770-779.
https://doi.org/10.1016/j.jsps.2016.10.006
30. Pandey, S.K., et al., Formulation and evaluation of floating tablet of Nimesulide by direct compression method. Magna Scientia Advanced Research and Reviews, 2024. 10(1): p. 153-161.
https://doi.org/10.30574/msarr.2024.10.1.0008
31. Hanif, M., et al., Development of in vitro - in vivo correlations for newly optimized Nimesulide formulations. PLoS One, 2018. 13(8): p. e0203123.
https://doi.org/10.1371/journal.pone.0203123
32. Chavda, V.P., et al., Preparation and Evaluation of Extended Release Nimesulide Tablet Based on Diffusion Controlled Mechanism. Asian Journal of Pharmaceutical Research and Health Care, 2013. 5(2): p. 81-88.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
