Influence of Irrigation Intervals and Exogenous Applications of Brassinolide and Chitosan on Production and Quality Attributes of Tomato
DOI:
https://doi.org/10.70749/ijbr.v3i10.2434Keywords:
Tomato, Irrigation Intervals, Brassinolide, Chitosan, Yield, Quality Attributes.Abstract
The research investigated the varying irrigation intervals and concentrations of Brassinolide and Chitosan for tomato crop production, focusing on yield and quality optimization. A randomized complete block design (RCBD) was used to evaluate four irrigation intervals and three doses of Brassinolide and Chitosan each with one control treatment. The experiment was conducted over two consecutive years (2022-23) at the Agriculture Research Institute, Swat, Khyber Pakhtunkhwa. Four Irrigation Intervals (II) including (II1=daily, II2=3, II3=6, II4=9 days), along with varying concentrations of Brassinolide (3,6 and 9 µM L-1) and Chitosan (100,200 and 300 mgL-1, to determine their effects on tomato crop production and qualitative attributes. The study revealed significant variations in tomato plant parameters in response to different irrigation intervals and brassinolide (BL) + chitosan (CH) applications. 3-day irrigation intervals with BL 6 µML-1 + CH 100 mgL-1 resulted in the maximum fruits per plant (64.66), and yield (58.42 ton.ha-1). The 9-day irrigation interval generally exhibited the poorest performance, with the control treatment demonstrating minimum values for various parameters, including fruits per plant (13.5), yield (3.41 tons.hac-1), membrane stability index (35.56%), and leaf relative water content (52.88%). Biochemical Attributes data showed that the maximum Fruit Firmness (4.24kg.cm-2), Ascorbic Acid (21.82 mg.100g-1), Titratable Acidity (0.65%), TSS (4.120Brix), and Reducing Sugars (3.36%) were recorded at six-day intervals. In contrast, the minimum was recorded at nine-day intervals. The foliar application, Maximum Fruit Firmness (4.39kg.cm-2), Ascorbic Acid (22.15mg.100g-1), Titratable Acidity (0.72%), and Reducing Sugars (3.12%) were recorded at Chitosan at 100mg.L-1 While minimum Fruit pH (4.14) and maximum TSS (4.09) were recorded at combined foliar application of BL6+CH100.
Downloads
References
Albasha, R., Jovanovic, N., Cheviron, B., De Clercq, W., & Mailhol, J. (2016). Optimizing tomato water and fertilizer uses in smallholder farms in South Africa using the Piloten model. Irrigation and Drainage, 69(S1), 100-116.
https://doi.org/10.1002/ird.2071
Ali, U., Jing, W., Zhu, J., Omarkhanova, Z., Fahad, S., Nurgazina, Z., & Khan, Z. A. (2021). Climate change impacts on agriculture sector: A case study of Pakistan. Ciência Rural, 51(8).
https://doi.org/10.1590/0103-8478cr20200110
Al-Turki, A., Murali, M., Omar, A. F., Rehan, M., & Sayyed, R. (2023). Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants. Frontiers in Microbiology, 14.
https://doi.org/10.3389/fmicb.2023.1214845
El Amerany, F., Rhazi, M., Wahbi, S., Taourirte, M., & Meddich, A. (2020). The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Scientia Horticulturae, 261, 109015.
https://doi.org/10.1016/j.scienta.2019.109015
AOAC. (2000). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemist-s. Gaithersburg, Maryland 20877-2417, USA.
AOAC. (2006). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemist-s. Gaithersburg, Maryland 20877-2417, USA
Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. (2021). Impact of foliar application of Chitosan dissolved in different organic acids on Isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2), 388.
https://doi.org/10.3390/plants10020388
AYAS, S. (2019). Water-yield relationships of deficit irrigated tomato (Lycopersicon lycopersicum L. Var. Hazar f1). Applied Ecology and Environmental Research, 17(4).
https://doi.org/10.15666/aeer/1704_77657781
Bano, A., Waqar, A., Khan, A., & Tariq, H. (2022). Phytostimulants in sustainable agriculture. Frontiers in Sustainable Food Systems, 6.
https://doi.org/10.3389/fsufs.2022.801788
Bai, C., Zheng, Y., Watkins, C. B., Fu, A., Ma, L., Gao, H., Yuan, S., Zheng, S., Gao, L., Wang, Q., Meng, D., & Zuo, J. (2021). Revealing the specific regulations of Brassinolide on tomato fruit chilling injury by integrated multi-omics. Frontiers in Nutrition, 8.
https://doi.org/10.3389/fnut.2021.769715
Demehin, O., Attjioui, M., Goñi, O., & O’Connell, S. (2024). Chitosan from mushroom improves drought stress tolerance in tomatoes. Plants, 13(7), 1038.
https://doi.org/10.3390/plants13071038
Farouk, S., & Amany, A. (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology, 14(1).
https://doi.org/10.4314/ejb.v14i1.2
Fawzy, Z., Ragab, M., Arafa, Y., Omaima, M. S., & El-Sawy, S. (2019). Effect of irrigation systems on vegetative growth, fruit yield, quality and irrigation water use efficiency of tomato plants (Solanum lycopersicum L.) grown under water stress conditions. Acta Scientific Agriculture, 3(4), 172-183.
Fawzy, Z., Ragab, M., Arafa, Y., Omaima, M. S., & El-Sawy, S. (2019). Effect of irrigation systems on vegetative growth, fruit yield, quality and irrigation water use efficiency of tomato plants (Solanum lycopersicum L.) grown under water stress conditions. Acta Scientific Agriculture, 3(4), 172-183.
Ghosh, T., Panja, P., Sau, S., & Datta, P. (2022). Role of Brassinolide in fruit growth, development, quality and cracking of litchi CV. Bombai grown in new alluvial zone of West Bengal. International Journal of Bio-resource and Stress Management, 13(5), 507-512.
https://doi.org/10.23910/1.2022.2758
Hassnain, H., Basit, A., Alam, M., Ahmad, I., Ullah, I., Alam, N., Ullah, I., Khalid, M. A., Shair, M., & Ain, N. U. (2020). Efficacy of Chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pakistan Journal of Agricultural Research, 33(1).
https://doi.org/10.17582/journal.pjar/2020/33.1.27.41
Hernández-Hernández, H., González-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., & Juárez-Maldonado, A. (2018). Effects of Chitosan–PVA and CU nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1), 178.
https://doi.org/10.3390/molecules23010178
Hu, S., Liu, L., Li, S., Shao, Z., Meng, F., Liu, H., Duan, W., Liang, D., Zhu, C., Xu, T., & Wang, Q. (2020). Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. Horticulture Research, 7(1).
https://doi.org/10.1038/s41438-020-00383-0
Jangid, K. K., & Dwivedi, P. (2017). Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum mill.) under drought stress. Acta Physiologiae Plantarum, 39(3).
https://doi.org/10.1007/s11738-017-2373-1
Jangid, K. K., & Dwivedi, P. (2017). Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum mill.) under drought stress. Acta Physiologiae Plantarum, 39(3).
https://doi.org/10.1007/s11738-017-2373-1
Ji, B., Li, J., Xia, Y., & Li, Z. (2023). Effects of brassinolide on the physiological characteristics of maize (Zea mays L.) cultivars under salt stress. Bangladesh Journal of Botany, 551-558.
https://doi.org/10.3329/bjb.v52i20.68220
Maia Júnior, S. D., Andrade, J., Nascimento, R. D., Lima, R. F., Bezerra, C. V., & Ferreira, V. M. (2022). Brassinosteroid application increases tomato tolerance to salinity by changing the effects of stress on membrane integrity and gas exchange. Acta Scientiarum. Agronomy, 44, e55647.
https://doi.org/10.4025/actasciagron.v44i1.55647
Li, K. R., & Feng, C. H. (2010). Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum, 33(4), 1293-1300.
https://doi.org/10.1007/s11738-010-0661-0
Lovelli, S., Potenza, G., Castronuovo, D., Perniola, M., & Candido, V. (2017). Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Italian Journal of Agronomy, 12(1), 795.
https://doi.org/10.4081/ija.2016.795
Lovelli, S., Potenza, G., Castronuovo, D., Perniola, M., & Candido, V. (2017). Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Italian Journal of Agronomy, 12(1), 795.
https://doi.org/10.4081/ija.2016.795
Meena, M., Pilania, S., Pal, A., Mandhania, S., Bhushan, B., Kumar, S., Gohari, G., & Saharan, V. (2020). CU-chitosan nano-net improves keeping quality of tomato by modulating physio-biochemical responses. Scientific Reports, 10(1).
https://doi.org/10.1038/s41598-020-78924-9
Mendonça, T. G., Silva, M. B., Pires, R. C., & Souza, C. F. (2020). Deficit irrigation of subsurface drip-irrigated grape tomato. Engenharia Agrícola, 40(4), 453-461.
https://doi.org/10.1590/1809-4430-eng.agric.v40n4p453-461/2020
MINFAL. (2022). Agricultural Statistics of Pakistan. Government of Pakistan. Ministry of Food, Agriculture and Livestock. Islamabad
Mohammed, K. A., Hussein, H. M., & Elshamly, A. M. (2024). Monitoring plant responses in field-grown peanuts exposed to exogenously applied chitosan under full and limited irrigation levels. Scientific Reports, 14(1).
https://doi.org/10.1038/s41598-024-56573-6
Mukherjee, S., Dash, P. K., Das, D., & Das, S. (2023). Growth, yield and water productivity of tomato as influenced by deficit irrigation water management. Environmental Processes, 10(1).
https://doi.org/10.1007/s40710-023-00624-z
Muroyiwa, G., Mhizha, T., Mashonjowa, E., & Muchuweti, M. (2023). Using AquaCrop model to derive deficit irrigation schedules for improved irrigation water management for tomato production in Zimbabwe. African Crop Science Journal, 31(3), 365-378.
https://doi.org/10.4314/acsj.v31i3.7
Naservafaei, S., Sohrabi, Y., Moradi, P., Mac Sweeney, E., & Mastinu, A. (2021). Biological response of Lallemantia iberica to Brassinolide treatment under different watering conditions. Plants, 10(3), 496.
https://doi.org/10.3390/plants10030496
Ogungbemi, K., Ilesanmi, F. F., Ilori, A., Odeniyi, T. A., Balogun, D., Ajisafe, S. S., Balogun, B., Oke, B. A., & Adeniyi, B. M. (2020). Increasing the shelf-life and quality of matured Scotch bonnet (ATA rodo) and tomato using chitosan coating. Journal of Agricultural Science and Practice, 5(1), 30-35.
https://doi.org/10.31248/jasp2019.182
Petriccione, M., Mastrobuoni, F., Pasquariello, M., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M. (2015). Effect of Chitosan coating on the Postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods, 4(4), 501-523.
https://doi.org/10.3390/foods4040501
Rehman, A., Ma, H., Ozturk, I., & Ahmad, M. I. (2021). Examining the carbon emissions and climate impacts on main agricultural crops production and land use: Updated evidence from Pakistan. Environmental Science and Pollution Research, 29(1), 868-882.
https://doi.org/10.1007/s11356-021-15481-2
Salman, K. A., Hussein, H. A., & Abbas, S. H. (2021). Antifungal activity of CHITOSAN against rhizopus stolonifer. Journal of Experimental Biology and Agricultural Sciences, 9(6), 901-906.
https://doi.org/10.18006/2021.9(6).901.906
Samui, I., Skalicky, M., Sarkar, S., Brahmachari, K., Sau, S., Ray, K., Hossain, A., Ghosh, A., Nanda, M. K., Bell, R. W., Mainuddin, M., Brestic, M., Liu, L., Saneoka, H., Raza, M. A., Erman, M., & EL Sabagh, A. (2020). Yield response, nutritional quality and water productivity of tomato (Solanum lycopersicum L.) are influenced by drip irrigation and straw mulch in the coastal saline ecosystem of Ganges delta, India. Sustainability, 12(17), 6779.
https://doi.org/10.3390/su12176779
Shao, G., Wang, M., Liu, N., Yuan, M., Kumar, P., & She, D. (2014). Growth and comprehensive quality index of tomato under rain shelters in response to different irrigation and drainage treatments. The Scientific World Journal, 2014, 1-12.
https://doi.org/10.1155/2014/457937
Shehata, S. A., Abdelrahman, S. Z., Megahed, M. M., Abdeldaym, E. A., El-Mogy, M. M., & Abdelgawad, K. F. (2021). Extending shelf life and maintaining quality of tomato fruit by calcium chloride, hydrogen peroxide, Chitosan, and Ozonated water. Horticulturae, 7(9), 309.
https://doi.org/10.3390/horticulturae7090309
Sridhara, S., Ramesh, N., Gopakkali, P., Paramesh, V., Tamam, N., Abdelbacki, A. M., Elansary, H. O., El-Sabrout, A. M., & Abdelmohsen, S. A. (2021). Application of homobrassinolide enhances growth, yield and quality of tomato. Saudi Journal of Biological Sciences, 28(8), 4800-4806.
https://doi.org/10.1016/j.sjbs.2021.05.008
Sridhara, S., Ramesh, N., Gopakkali, P., Paramesh, V., Tamam, N., Abdelbacki, A. M., Elansary, H. O., El-Sabrout, A. M., & Abdelmohsen, S. A. (2021). Application of homobrassinolide enhances growth, yield and quality of tomato. Saudi Journal of Biological Sciences, 28(8), 4800-4806.
https://doi.org/10.1016/j.sjbs.2021.05.008
Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and procedures of statistics: A biometrical approach, 3rd ed. McGraw-Hill.
Swain, R., Sahoo, S., Behera, M., & Rout, G. R. (2023). Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Frontiers in Plant Science, 14(3).
https://doi.org/10.3389/fpls.2023.1104874
Swain, R., Sahoo, S., Behera, M., & Rout, G. R. (2023). Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Frontiers in Plant Science, 14(3).
https://doi.org/10.3389/fpls.2023.1104874
Turan, M., Ekinci, M., Argin, S., Brinza, M., & Yildirim, E. (2023). Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Frontiers in Plant Science, 14.
https://doi.org/10.3389/fpls.2023.1211210
Ullah, N., Basit, A., Ahmad, I., Ullah, I., Shah, S. T., Mohamed, H. I., & Javed, S. (2020). Mitigation the adverse effect of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bulletin of the National Research Centre, 44(1).
https://doi.org/10.1186/s42269-020-00435-4
Wang, S., Liu, J., Zhao, T., Du, C., Nie, S., Zhang, Y., Lv, S., Huang, S., & Wang, X. (2019). Modification of threonine-1050 of SlBRI1 regulates BR signalling and increases fruit yield of tomato. BMC Plant Biology, 19(1).
https://doi.org/10.1186/s12870-019-1869-9
YILMAZ, Y., & KORKMAZ, A. (2021). Effects of different irrigation waters and silicon doses on leaf SPAD meter readings, chlorophyll and carotenoid contents of tomato plants. Tarım Bilimleri Dergisi, 27(2), 123-132.
https://doi.org/10.15832/ankutbd.915237
Younas, H., Sadozai, K. N., Ali, A., & Ahmad, R. (2024). Technical efficiency and economic analysis of tomato production in Khyber Pakhtunkhwa: A stochastic frontier approach. Sarhad Journal of Agriculture, 40(3).
https://doi.org/10.17582/journal.sja/2024/40.3.928.9
Zakir, H. M., Saha, S., & Rahman, M. S. (2022). Influence of Chitosan coating on shelf-life, biochemical properties and nutrient elements of carrot (Daucus carota L.) during Postharvest storage. Current Journal of Applied Science and Technology, 44-54.
https://doi.org/10.9734/cjast/2022/v41i2831796
Zhang, J., Zeng, L., Sun, H., Zhang, J., & Chen, S. (2017). Using chitosan combined treatment with citric acid as edible coatings to delay postharvest ripening process and maintain tomato (Solanum lycopersicon Mill) quality. Journal of Food and Nutrition Research, 5(3), 144-150.
https://doi.org/10.12691/jfnr-5-3-1
Zhang, Y., Chen, H., Li, S., Li, Y., Kanwar, M. K., Li, B., Bai, L., Xu, J., & Shi, Y. (2021). Comparative physiological and Proteomic analyses reveal the mechanisms of brassinolide-mediated tolerance to calcium nitrate stress in tomato. Frontiers in Plant Science, 12.
https://doi.org/10.3389/fpls.2021.724288
Zhao, D., Wang, Z., Zhang, J., Li, W., & Zhou, B. (2019). Improving yield and quality of processing tomato (Lycopersicon esculentum Miller) using alternate partial root-zone drip irrigation in arid northwest China. Water, 11(7), 1503.
https://doi.org/10.3390/w11071503
Zhu, T., Tan, W., Deng, X., Zheng, T., Zhang, D., & Lin, H. (2015). Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology, 100, 196-204.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.