DNA Repair Mechanisms in Multi Drug Resistant Bacteria: Impact on Genome Stability and Antibiotic Resistance
DOI:
https://doi.org/10.70749/ijbr.v3i9.2486Keywords:
MDR, DNA Repair, Antibiotic Resistance, Antibiotic Stress.Abstract
Conventional antibiotics are becoming less effective as the global health crisis of multidrug-resistant (MDR) bacterial infections worsens. The function of bacterial DNA repair systems in promoting MDR is a quickly developing paradigm, despite the well-established nature of conventional resistance mechanisms such as efflux pumps and drug-inactivating enzymes. The present understanding of how DNA repair pathways, which are necessary for the stability of the genome, paradoxically promote adaptive mutagenesis and horizontal gene transfer under antibiotic stress is summarized in this review. In important MDR pathogens, we investigate the complex interactions among repair mechanisms, stress reactions, and resistance evolution. The regulatory crosstalk with other bacterial systems and the potential of DNA repair inhibitors as novel therapeutic adjuvants are two examples of significant knowledge gaps that are highlighted. We wrap up by going over potential future directions for focusing on DNA repair to re-sensitize MDR bacteria and prolong the effectiveness of current antibiotics.
Downloads
References
1. Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The lancet, 399(10325), 629-655.
2. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51.
https://doi.org/10.1038/nrmicro3380
3. Cirz, R. T., Chin, J. K., Andes, D. R., De Crécy-Lagard, V., Craig, W. A., & Romesberg, F. E. (2005). Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biology, 3(6), e176.
https://doi.org/10.1371/journal.pbio.0030176
4. Sancar, A. (2003). Structure and function of DNA Photolyase and Cryptochrome blue-light photoreceptors. Chemical Reviews, 103(6), 2203-2238.
https://doi.org/10.1021/cr0204348
5. Falnes, P. Ø., Johansen, R. F., & Seeberg, E. (2002). Alkb-mediated oxidative demethylation reverses DNA damage in escherichia coli. Nature, 419(6903), 178-182.
https://doi.org/10.1038/nature01048
6. Krokan, H. E., & Bjoras, M. (2013). Base excision repair. Cold Spring Harbor Perspectives in Biology, 5(4), a012583-a012583.
https://doi.org/10.1101/cshperspect.a012583
7. Kisker, C., Kuper, J., & Van Houten, B. (2013). Prokaryotic nucleotide excision repair. Cold Spring Harbor Perspectives in Biology, 5(3), a012591-a012591.
https://doi.org/10.1101/cshperspect.a012591
8. Oliver, A., Cantón, R., Campo, P., Baquero, F., & Blázquez, J. (2000). High frequency of Hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science, 288(5469), 1251-1253.
https://doi.org/10.1126/science.288.5469.1251
9. Cox, M. M. (2007). Regulation of bacterial RecA protein function. Critical Reviews in Biochemistry and Molecular Biology, 42(1), 41-63.
https://doi.org/10.1080/10409230701260258
10. Maslowska, K. H., Makiela‐Dzbenska, K., & Fijalkowska, I. J. (2019). The SOS system: A complex and tightly regulated response to DNA damage. Environmental and Molecular Mutagenesis, 60(4), 368-384.
https://doi.org/10.1002/em.22267
11. Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodríguez-Rojas, A., Blázquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F., Vogel, J., & Matic, I. (2013). β-lactam antibiotics promote bacterial mutagenesis via an rpos-mediated reduction in replication fidelity. Nature Communications, 4(1).
https://doi.org/10.1038/ncomms2607
12. Kohanski, M. A., DePristo, M. A., & Collins, J. J. (2010). Sublethal antibiotic treatment leads to Multidrug resistance via radical-induced mutagenesis. Molecular Cell, 37(3), 311-320.
https://doi.org/10.1016/j.molcel.2010.01.003
13. Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews, 61(3), 377-392.
https://doi.org/10.1128/mmbr.61.3.377-392.1997
14. Van Acker, H., & Coenye, T. (2017). The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends in Microbiology, 25(6), 456-466.
https://doi.org/10.1016/j.tim.2016.12.008
15. Foti, J. J., Devadoss, B., Winkler, J. A., Collins, J. J., & Walker, G. C. (2012). Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science, 336(6079), 315-319.
https://doi.org/10.1126/science.1219192
16. Roldán-Arjona, T., García-Pedrajas, M. D., Luque-Romero, F. L., Hera, C., & Pueyo, C. (1991). An association between mutagenicity of the Ara test of Salmonella typhimurium and carcinogenicity in rodents for 16 halogenated aliphatic hydrocarbons. Mutagenesis, 6(3), 199-205.
https://doi.org/10.1093/mutage/6.3.199
17. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci [Internet]. 2014 May 20 [cited 2025 Oct 24];111(20).
https://pnas.org/doi/full/10.1073/pnas.1401876111
18. Bos, J., Zhang, Q., Vyawahare, S., Rogers, E., Rosenberg, S. M., & Austin, R. H. (2014). Emergence of antibiotic resistance from multinucleated bacterial filaments. Proceedings of the National Academy of Sciences, 112(1), 178-183.
https://doi.org/10.1073/pnas.1420702111
19. El Garch, F., Lismond, A., Piddock, L. J., Courvalin, P., Tulkens, P. M., & Van Bambeke, F. (2011). Fluoroquinolones induce the expression of patA and patB, which ENCODE ABC efflux pumps in streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy, 66(6), 1414-1415.
https://doi.org/10.1093/jac/dkr086
20. Truong-Bolduc, Q. C., Dunman, P. M., Strahilevitz, J., Projan, S. J., & Hooper, D. C. (2005). MgrA is a multiple regulator of two new efflux pumps inStaphylococcus aureus. Journal of Bacteriology, 187(7), 2395-2405.
https://doi.org/10.1128/jb.187.7.2395-2405.2005
21. Fuchs, R. P., & Fujii, S. (2013). Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harbor Perspectives in Biology, 5(12), a012682-a012682.
https://doi.org/10.1101/cshperspect.a012682
22. Mena, A., Smith, E. E., Burns, J. L., Speert, D. P., Moskowitz, S. M., Perez, J. L., & Oliver, A. (2008). Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by Hypermutation. Journal of Bacteriology, 190(24), 7910-7917.
https://doi.org/10.1128/jb.01147-08
23. Babic, A., Berkmen, M. B., Lee, C. A., & Grossman, A. D. (2011). Efficient gene transfer in bacterial cell chains. mBio, 2(2).
https://doi.org/10.1128/mbio.00027-11
24. Rajer, F., & Sandegren, L. (2022). The role of antibiotic resistance genes in the fitness cost of Multiresistance plasmids. mBio, 13(1).
https://doi.org/10.1128/mbio.03552-21
25. Galhardo, R. S., Hastings, P. J., & Rosenberg, S. M. (2007). Mutation as a stress response and the regulation of Evolvability. Critical Reviews in Biochemistry and Molecular Biology, 42(5), 399-435.
https://doi.org/10.1080/10409230701648502
26. Ram, Y., & Hadany, L. (2012). The evolution of stress-induced hypermutation in asexual populations. Evolution, 66(7), 2315-2328.
https://doi.org/10.1111/j.1558-5646.2012.01576.x
27. Peng, L. F., Stanton, B. Z., Maloof, N., Wang, X., & Schreiber, S. L. (2009). Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of sonic hedgehog. Bioorganic & Medicinal Chemistry Letters, 19(22), 6319-6325.
https://doi.org/10.1016/j.bmcl.2009.09.089
28. Mo, C. Y., Manning, S. A., Roggiani, M., Culyba, M. J., Samuels, A. N., Sniegowski, P. D., Goulian, M., & Kohli, R. M. (2016). Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. mSphere, 1(4).
https://doi.org/10.1128/msphere.00163-16
29. Good, L., Awasthi, S. K., Dryselius, R., Larsson, O., & Nielsen, P. E. (2001). Bactericidal antisense effects of peptide–PNA conjugates. Nature Biotechnology, 19(4), 360-364.
30. Baym, M., Stone, L. K., & Kishony, R. (2016). Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 351(6268).
https://doi.org/10.1126/science.aad3292
31. Chang, D., Smalley, D. J., & Conway, T. (2002). Gene expression profiling of Escherichia coli growth transitions: An expanded stringent response model. Molecular Microbiology, 45(2), 289-306.
https://doi.org/10.1046/j.1365-2958.2002.03001.x
32. Brown-Jaque, M., Calero-Cáceres, W., & Muniesa, M. (2015). Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid, 79, 1-7.
https://doi.org/10.1016/j.plasmid.2015.01.001
33. Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their Co-selection potential. BMC Genomics, 16(1).
https://doi.org/10.1186/s12864-015-2153-5
34. Boles, B. R., & Singh, P. K. (2008). Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proceedings of the National Academy of Sciences, 105(34), 12503-12508.
https://doi.org/10.1073/pnas.0801499105
35. Dörr, T., Lewis, K., & Vulić, M. (2009). SOS response induces persistence to Fluoroquinolones in escherichia coli. PLoS Genetics, 5(12), e1000760.
https://doi.org/10.1371/journal.pgen.1000760
36. Wu, Y., Vulić, M., Keren, I., & Lewis, K. (2012). Role of oxidative stress in Persister tolerance. Antimicrobial Agents and Chemotherapy, 56(9), 4922-4926.
https://doi.org/10.1128/aac.00921-12
37. Gottesman, S., & Storz, G. (2010). Bacterial small RNA regulators: Versatile roles and rapidly evolving variations. Cold Spring Harbor Perspectives in Biology, 3(12), a003798-a003798.
https://doi.org/10.1101/cshperspect.a003798
38. Levy, A., Goren, M. G., Yosef, I., Auster, O., Manor, M., Amitai, G., Edgar, R., Qimron, U., & Sorek, R. (2015). CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 520(7548), 505-510.
https://doi.org/10.1038/nature14302
39. Lopatkin, A. J., & Collins, J. J. (2020). Predictive biology: Modelling, understanding and harnessing microbial complexity. Nature Reviews Microbiology, 18(9), 507-520.
https://doi.org/10.1038/s41579-020-0372-5
40. Liu, Y., Jia, Y., Yang, K., Li, R., Xiao, X., Zhu, K., & Wang, Z. (2020). Metformin restores tetracyclines susceptibility against Multidrug resistant bacteria. Advanced Science, 7(12).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
