Modern Breeding Strategies for the Identification of Drought Tolerance in Wheat: A Comprehensive Review
DOI:
https://doi.org/10.70749/ijbr.v3i10.2532Keywords:
Bread Wheat, Drought Tolerance, Phenotypic Screening, Molecular Markers, QTL, Abiotic StressAbstract
The global food supply is under significant threat due to climate change with drought being a major limiting factor in bread wheat production. This review paper is an integrated account of phenotypic and molecular methods for identifying drought tolerance in bread wheat at the importance of a synergistic approach. Traditional phenotypic approaches which use observable traits such as grain yield and physiological indicators are useful for initial screening and field validation but can be time-consuming and subject to environmental factors. In contrast, modern molecular techniques, including Marker-Assisted Selection (MAS), Quantitative Trait Loci (QTL) mapping and functional genomics, provide precise and efficient means for the identification of superior genotypes at the genetic level. By synthesizing findings from recent literature, this review highlights that an integrated approach that combines high-throughput phenotyping with advanced molecular tools is the most effective way to overcome the limitations of single-method screening and advance the development of climate-resilient wheat varieties. Future directions in breeding are likely to make use of pan-genomics and advanced genetic engineering to proactively design crops with greater resilience.
Downloads
References
Abou-Elwafa, S. F., & Shehzad, T. (2020). Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 68(2), 711–728.
https://doi.org/10.1007/s10722-020-01018-y
Adel, S., & Carels, N. (2023). Plant Tolerance to Drought Stress with Emphasis on Wheat. Plants, 12(11), 2170.
https://doi.org/10.3390/plants12112170
Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R., Mora-Poblete, F., Saeed, T., Zulfiqar, F., Ali, M. M., Nawaz, M., Rafiq, M., Osman, H. S., Albaqami, M., Ahmed, M. A. A., & Tauseef, M. (2022). Screening of Wheat (Triticum aestivum L.) Genotypes for Drought Tolerance through Agronomic and Physiological Response. Agronomy, 12(2), 287.
https://doi.org/10.3390/agronomy12020287
Ahmed, K., Shabbir, G., Ahmed, M., & Shah, K. N. (2020). Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Science of The Total Environment, 729, 139082.
https://doi.org/10.1016/j.scitotenv.2020.139082
Ameen, E., & M, T. (2013). MOLECULAR MARKERS FOR DROUGHT TOLERANCE IN BREAD WHEAT. Journal of Agricultural Chemistry and Biotechnology.
https://doi.org/10.21608/jacb.2013.53039
Aminian, R., Mohammadi, S., Hoshmand, S., & Khodombashi, M. (2010). Chromosomal analysis of photosynthesis rate and stomatal conductance and their relationships with grain yield in wheat (Triticum aestivum L.) under water-stressed and well-watered conditions. Acta Physiologiae Plantarum, 33(3), 755–764.
https://doi.org/10.1007/s11738-010-0600-0
An, J., Li, Q., Yang, J., Zhang, G., Zhao, Z., Wu, Y., Wang, Y., & Wang, W. (2019). Wheat F-box Protein TaFBA1 Positively Regulates Plant Drought Tolerance but Negatively Regulates Stomatal Closure. Frontiers in Plant Science, 10.
https://doi.org/10.3389/fpls.2019.01242
Anwaar, H. A., Perveen, R., Mansha, M. Z., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U. ud din, Sajid, M., Aslam, H. M. U., Alam, M. M., Rizwan, M., Ikram, R. M., Alghanem, S. M. S., Rashid, A., & Khan, K. A. (2020). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 27(7), 1818–1823.
https://doi.org/10.1016/j.sjbs.2019.12.009
Asadi, M. H., Hassan, M. ul, Begum, S., Nadeem, H. M. U., Ali, M. M., Fatima, M., Zaman, M. A., Hashmi, M. A. N., & Bibi, N. (2025). Advances in Breeding Strategies for Collar Rot Resistance in Peanut (Arachis hypogaea L.). Planta Animalia, 4(4), 411–420.
https://doi.org/10.71454/PA.004.04.0221
Bapela, T., Shimelis, H., Tsilo, T. J., & Mathew, I. (2022). Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities. Plants, 11(10), 1331.
https://doi.org/10.3390/plants11101331
Belete, Y., Shimelis, H., Laing, M., & Mathew, I. (2021). Genetic diversity and population structure of bread wheat genotypes determined via phenotypic and SSR marker analyses under drought-stress conditions. Taylor & Francis.
https://www.tandfonline.com/doi/abs/10.1080/15427528.2020.1818342
Bhanbhro, N., Wang, H.-J., Yang, H., Xu, X.-J., Jakhar, A. M., shalmani, A., Zhang, R.-X., Bakhsh, Q., Akbar, G., Jakhro, M. I., Khan, Y., & Chen, K.-M. (2024). Revisiting the molecular mechanisms and adaptive strategies associated with drought stress tolerance in common wheat (Triticum aestivum L.). Plant Stress, 11, 100298.
https://doi.org/10.1016/j.stress.2023.100298
Chen, D., Chai, S., McIntyre, C. L., & Xue, G.-P. (2017). Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Reports, 37(2), 225–237.
https://doi.org/10.1007/s00299-017-2224-y
Chen, D., Richardson, T., Chai, S., Lynne McIntyre, C., Rae, A. L., & Xue, G.-P. (2016). Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat. Plant and Cell Physiology, 57(10), 2076–2090.
https://doi.org/10.1093/pcp/pcw126
Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., Elsanafawy, N. E. M., Anwar, S., Alamri, S., Sabagh, A. E., & Islam, M. S. (2021). Evaluation of Drought Tolerance of Some Wheat (Triticum aestivum L.) Genotypes through Phenology, Growth, and Physiological Indices. Agronomy, 11(9), 1792.
https://doi.org/10.3390/agronomy11091792
Correia, P. M. P., Cairo Westergaard, J., Bernardes da Silva, A., Roitsch, T., Carmo-Silva, E., & Marques da Silva, J. (2022). High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. Journal of Experimental Botany, 73(15), 5235–5251.
https://doi.org/10.1093/jxb/erac160
Cui, X.-Y., Du, Y.-T., Fu, J., Yu, T.-F., Wang, C.-T., Chen, M., Chen, J., Ma, Y.-Z., & Xu, Z.-S. (2018). Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biology, 18(1), 1–13.
https://doi.org/10.1186/s12870-018-1306-5
Egawa, C., Kobayashi, F., Ishibashi, M., Nakamura, T., Nakamura, C., & Takumi, S. (2006). Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes & Genetic Systems, 81(2), 77–91.
https://doi.org/10.1266/ggs.81.77
El-Esawi, M. A., Elashtokhy, M. M. A., Shamseldin, S. A. M., El-Ballat, E. M., Zayed, E. M., & Heikal, Y. M. (2022). Analysis of Genetic Diversity and Phylogenetic Relationships of Wheat (Triticum aestivum L.) Genotypes Using Phenological, Molecular and DNA Barcoding Markers. Genes, 14(1), 34.
https://doi.org/10.3390/genes14010034
Fernandez, G. C. (1993). Effective selection criteria for assessing plant stress tolerance.
https://www.cabidigitallibrary.org/doi/full/10.5555/19951607124
Fischer, R., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897–912.
https://doi.org/10.1071/AR9780897
Gharib, M. a. a. H., Qabil, N., Salem, A. H., Ali, M. M. A., Awaad, H. A., & Mansour, E. (2020). Characterization of wheat landraces and commercial cultivars based on morpho-phenological and agronomic traits. Cereal Research Communications, 49(1), 149–159.
https://doi.org/10.1007/s42976-020-00077-2
Golabadi, M., Arzani, A., Mirmohammadi Maibody, S. a. M., Sayed Tabatabaei, B. E., & Mohammadi, S. A. (2010). Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica, 177(2), 207–221.
https://doi.org/10.1007/s10681-010-0242-8
Gupta, P. K., Varshney, R. K., Sharma, P. C., & Ramesh, B. (1999). Molecular markers and their applications in wheat breeding. Plant Breeding, 118(5), 369–390.
https://doi.org/10.1046/j.1439-0523.1999.00401.x
Haque, M. S., Saha, N. R., Islam, M. T., Islam, M. M., Kwon, S.-J., Roy, S. K., & Woo, S.-H. (2020). Screening for drought tolerance in wheat genotypes by morphological and SSR markers. Journal of Crop Science and Biotechnology, 24(1), 27–39.
https://doi.org/10.1007/s12892-020-00036-7
Ihsan, M. Z., El-Nakhlawy, F. S., Ismail, S. M., Fahad, S., & Daur, I. (n.d.). Frontiers | Wheat Phenological Development and Growth Studies As Affected by Drought and Late Season High Temperature Stress under Arid Environment.
https://doi.org/10.3389/fpls.2016.00795
Ishaaq, I., Farooq, M., Tahira, S., Maqbool, R., Barutçular, C., Yasir, M., Bano, S., Ulhassan, Z., Zahid, G., Asghar, M., Hussain, S., Gabor, K., Ibrahimova, U., Zhu, J., & Rastogi, A. (2022). Exploration of Genetic Pattern of Phenological Traits in Wheat (Triticum aestivum L.) under Drought Stress.
Kavi Kishor, P. B., & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300–311.
https://doi.org/10.1111/pce.12157
Khadka, K., Earl, H. J., Raizada, M. N., & Navabi, A. (2020). A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Frontiers in Plant Science, 11.
https://doi.org/10.3389/fpls.2020.00715
Khaled, A. G. A., Motawea, M. H., & Said, A. A. (2015). Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Journal of Genetic Engineering and Biotechnology, 13(2), 243–252.
https://doi.org/10.1016/j.jgeb.2015.05.001
Kirigwi, F. M., Van Ginkel, M., Brown-Guedira, G., Gill, B. S., Paulsen, G. M., & Fritz, A. K. (2007). Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding, 20(4), 401–413.
https://doi.org/10.1007/s11032-007-9100-3
Kumar, S., Kumar, M., Mir, R. R., Kumar, R., & Kumar, S. (2020). Advances in Molecular Markers and Their Use in Genetic Improvement of Wheat. Physiological, Molecular, and Genetic Perspectives of Wheat Improvement, 139–174.
https://doi.org/10.1007/978-3-030-59577-7_8
Langridge, P., & Reynolds, M. (2021). Breeding for drought and heat tolerance in wheat. Theoretical and Applied Genetics, 134(6), 1753–1769.
https://doi.org/10.1007/s00122-021-03795-1
Mansour, H. A., Mohamed, S. E. S., & Lightfoot, D. A. (2020). Molecular studies for drought tolerance in some Egyptian wheat genotypes under different irrigation systems.
https://www.degruyterbrill.com/document/doi/10.1515/opag-2020-0030/html
Martínez-Vilalta, J., & Garcia-Forner, N. (2017). Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant, Cell & Environment, 40(6), 962–976.
https://doi.org/10.1111/pce.12846
Mwadzingeni, L., Shimelis, H., Dube, E., Laing, M. D., & Tsilo, T. J. (2016). Breeding wheat for drought tolerance: Progress and technologies. Journal of Integrative Agriculture, 15(5), 935–943.
https://doi.org/10.1016/S2095-3119(15)61102-9
Nazarzadeh, Z., Onsori, H., & Akrami, S. (2020). Genetic Diversity of Bread Wheat (Triticum aestivum L.) Genotypes Using RAPD and ISSR Molecular Markers. Journal of Genetic Resources.
https://doi.org/10.22080/jgr.2020.18262.1172
Niu, X., Luo, T., Zhao, H., Su, Y., Ji, W., & Li, H. (2020). Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. Gene, 740, 144514.
https://doi.org/10.1016/j.gene.2020.144514
Nouraei, S., Mia, M. S., Liu, H., Turner, N. C., & Yan, G. (2024). Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. Molecular Genetics and Genomics, 299(1), 1–23.
https://doi.org/10.1007/s00438-024-02104-x
Pantha, S., Kilian, B., Özkan, H., Zeibig, F., & Frei, M. (2025). A comparison of drought responses in wild wheat relatives and domesticated wheat grown under irrigated and rainfed field conditions. Field Crops Research, 321, 109678.
https://doi.org/10.1016/j.fcr.2024.109678
Poudel, M. R., Ghimire, S., Dhakal, K. H., Thapa, D. B., & Poudel, H. K. (2020). Evaluation of Wheat Genotypes under Irrigated, Heat Stress and Drought Conditions. Journal of Biology and Today S World, 9(1), 1–12.
https://doi.org/10.15412/j.jbtw.01070212
Pour-Aboughadareh, A., Mohammadi, R., Etminan, A., Shooshtari, L., Maleki-Tabrizi, N., & Poczai, P. (2020). Effects of Drought Stress on Some Agronomic and Morpho-Physiological Traits in Durum Wheat Genotypes. Sustainability, 12(14), 5610.
https://doi.org/10.3390/su12145610
Rauf, A., Sher, M. A., Farooq, U., Rasheed, A., Sajjad, M., Jing, R., Khan, Z., Attia, K. A., Mohammed, A. A., Fiaz, S., Chen, J., & Rehman, S. U. (2024). An SNP based genotyping assay for genes associated with drought tolerance in bread wheat. Molecular Biology Reports, 51(1), 1–11.
https://doi.org/10.1007/s11033-024-09481-x
Rosielle, A. A., & Hamblin, J. (1981). Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment. Crop Science, 21(6).
https://doi.org/10.2135/cropsci1981.0011183X002100060033x
Sallam, A., Eltaher, S., Alqudah, A. M., Belamkar, V., & Baenziger, P. S. (2022). Combined GWAS and QTL mapping revealed candidate genes and SNP network controlling recovery and tolerance traits associated with drought tolerance in seedling winter wheat. Genomics, 114(3), 110358.
https://doi.org/10.1016/j.ygeno.2022.110358
Semahegn, Y., Shimelis, H., Laing, M., & Mathew, I. (2020). Evaluation of bread wheat (Triticum aestivum L.) genotypes for yield and related traits under drought stress conditions. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 70(6), 474–484.
https://doi.org/10.1080/09064710.2020.1767802
Sewore, B. M., Abe, A., & Nigussie, M. (2023). Evaluation of bread wheat (Triticum aestivum L.) genotypes for drought tolerance using morpho-physiological traits under drought-stressed and well-watered conditions. PLoS ONE, 18(5), e0283347–e0283347.
https://doi.org/10.1371/journal.pone.0283347
Shokat, S., Sehgal, D., Vikram, P., Liu, F., & Singh, S. (2020). Molecular Markers Associated with Agro-Physiological Traits under Terminal Drought Conditions in Bread Wheat. International Journal of Molecular Sciences, 21(9), 3156.
https://doi.org/10.3390/ijms21093156
Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2), 222–229.
https://doi.org/10.1016/j.fcr.2006.02.001
Song, L., Wang, R., Yang, X., Zhang, A., & Liu, D. (2023). Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat (Triticum aestivum L.). Agriculture, 13(3), 642.
https://doi.org/10.3390/agriculture13030642
Soriano, J. M., Colasuonno, P., Marcotuli, I., & Gadaleta, A. (2021). Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat. Scientific Reports, 11(1), 11877.
https://doi.org/10.1038/s41598-021-91446-2
Trono, D., & Pecchioni, N. (2022). Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview. Plants, 11(23), 3358.
https://doi.org/10.3390/plants11233358
Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & EL Sabagh, A. (2021). Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability, 13(9), 4799.
https://doi.org/10.3390/su13094799
Yadav, O. P., & Bhatnagar, S. K. (2001). Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions. Field Crops Research, 70(3), 201–208.
https://doi.org/10.1016/S0378-4290(01)00138-1
Yao, Y., Guo, W., Gou, J., Hu, Z., Liu, J., Ma, J., Zong, Y., Xin, M., Chen, W., Li, Q., Wang, Z., Zhang, R., Uauy, C., Baloch, F. S., Ni, Z., & Sun, Q. (n.d.). Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design.
https://www.cell.com/molecular-plant/abstract/S1674-2052(25)00026-7
Yashavanthakumar, K. J., Baviskar, V. S., Navathe, S., Patil, R. M., Bagwan, J. H., Bankar, D. N., Gite, V. D., Gopalareddy, K., Mishra, C. N., Mamrutha, H. M., Singh, S. K., Desai, S. A., & Singh, G. P. (2021). Impact of heat and drought stress on phenological development and yield in bread wheat. Plant Physiology Reports, 26(2), 357–367.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
