Exploring the Role of Nanotechnology in Targeted Drug Delivery for the Control of Postoperative Inflammation and Promotion of the Surgical Recovery
DOI:
https://doi.org/10.70749/ijbr.v3i10.2542Keywords:
Nanotechnology, Targeted Drug Delivery, Postoperative Inflammation, Wound Healing, Surgical Recovery, Nanocarriers, Controlled Release, Tissue Regeneration.Abstract
This study explores the role of nanotechnology-based targeted drug delivery in controlling postoperative inflammation and enhancing surgical recovery. Traditional anti-inflammatory approaches often suffer from systemic toxicity and poor localization, whereas nanoscale carriers such as liposomes, polymeric nanoparticles, and dendrimers enable precise, sustained, and site-specific therapeutic release. Quantitative analysis of 200 postoperative patients revealed that 46% experienced minimal inflammation (mean CRP = 4.2 mg/L) and 27% showed only mild responses, demonstrating superior inflammatory control compared to conventional treatments. Moreover, 70% of patients treated with nanocarrier-mediated systems achieved rapid wound healing within 5–10 days, supported by accelerated epithelialization, reduced edema, and minimal infection risk. Overall, 72% exhibited excellent or good recovery, characterized by early mobility, minimal pain, and shorter hospital stays. These findings confirm that nanotechnology enhances drug bioavailability, modulates cytokine activity, promotes tissue regeneration, and significantly improves postoperative outcomes. Therefore, nanotechnology-based targeted delivery represents a safer and more effective therapeutic paradigm for postoperative care and surgical rehabilitation.
Downloads
References
1. Zhou, J. J., Feng, Y. C., Zhao, M. L., Guo, Q., & Zhao, X. B. (2025). Nanotechnology-driven strategies in postoperative cancer treatment: innovations in drug delivery systems. Frontiers in Pharmacology, 16, 1586948.
https://doi.org/10.3389/fphar.2025.1586948
2. Bhusal, P., Harrison, J., Sharma, M., Jones, D. S., Hill, A. G., & Svirskis, D. (2016). Controlled release drug delivery systems to improve post-operative pharmacotherapy. Drug delivery and translational research, 6(5), 441-451.
https://doi.org/10.1007/s13346-016-0305-z
3. Teo, Z. Y., Senthilkumar, S. D., & Srinivasan, D. K. (2025). Nanotechnology-Based Therapies for Preventing Post-Surgical Adhesions. Pharmaceutics, 17(3), 389.
https://doi.org/10.3390/pharmaceutics17030389
4. Deng, Y., Zhou, C., Fu, L., Huang, X., Liu, Z., Zhao, J., ... & Shao, H. (2023). A mini-review on the emerging role of nanotechnology in revolutionizing orthopedic surgery: challenges and the road ahead. Frontiers in Bioengineering and Biotechnology, 11, 1191509.
https://doi.org/10.3389/fbioe.2023.1191509
5. Satapathy, T., Singh, G., Pandey, R. K., Shukla, S. S., Bhardwaj, S. K., & Gidwani, B. (2024). Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement. Current Drug Targets, 25(1), 25-45.
https://doi.org/10.2174/0113orkXX7zhR5Nk2gADKq2tRvRrLFMuX31
6. Xia, L., Zhou, C., Li, Q., Liu, L., Jiang, C., Dai, H., ... & Liang, W. (2025). Nanotechnology in Orthopedic Care: Advances in Drug Delivery, Implants, and Biocompatibility Considerations. International Journal of Nanomedicine, 9251-9274.
https://doi.org/10.2147/ijn.s523462
7. Wang, H., Zhou, Y., Sun, Q., Zhou, C., Hu, S., Lenahan, C., ... & Tao, S. (2021). Update on nanoparticle-based drug delivery system for anti-inflammatory treatment. Frontiers in Bioengineering and Biotechnology, 9, 630352.
https://doi.org/10.3389/fbioe.2021.630352
8. Avanu, A. E., Ciubotariu, A. M., Ciornei, A. M., Cozmînc?, A. D., & Dodi, G. (2024). Nano-steps in altered opioid pharmacokinetics: a perspective on potential drug delivery post-bariatric surgery applications. RSC Pharmaceutics, 1(5), 864-878.
https://doi.org/10.1039/d4pm00187g
9. Aravinth, N., Praveen, I., Balachandar, S., & Parthasarathy, S. Nanotechnology and Acute Postoperative Pain Including Pain of Trauma-A Systematic Review.
https://doi.org/10.62441/nano-ntp.v20is3.66
10. Wang, C., Fan, W., Zhang, Z., Wen, Y., Xiong, L., & Chen, X. (2019). Advanced nanotechnology leading the way to multimodal imaging?guided precision surgical therapy. Advanced Materials, 31(49), 1904329.
https://doi.org/10.1002/adma.201904329
11. Abaszadeh, F., Ashoub, M. H., Khajouie, G., & Amiri, M. (2023). Nanotechnology development in surgical applications: recent trends and developments. European journal of medical research, 28(1), 537.
https://doi.org/10.1186/s40001-023-01429-4
12. Tang, L., He, S., Yin, Y., Li, J., Xiao, Q., Wang, R., ... & Wang, W. (2022). Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. Nanoscale, 14(5), 1621-1645.
https://doi.org/10.1039/d1nr07725b
13. Morgan, C. E., Wasserman, M. A., & Kibbe, M. R. (2016). Targeted nanotherapies for the treatment of surgical diseases. Annals of surgery, 263(5), 900-907.
https://doi.org/10.1097/sla.0000000000001605
14. Gu, W., Wu, C., Chen, J., & Xiao, Y. (2013). Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. International journal of nanomedicine, 2305-2317.
https://doi.org/10.2147/ijn.s44393
15. Wei, J., Mu, J., Tang, Y., Qin, D., Duan, J., & Wu, A. (2023). Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. Journal of nanobiotechnology, 21(1), 282.
https://doi.org/10.1186/s12951-023-01974-4
16. Wu, Y., Li, X., Fu, X., Huang, X., Zhang, S., Zhao, N., ... & Huang, J. (2024). Innovative nanotechnology in drug delivery systems for advanced treatment of posterior segment ocular diseases. Advanced science, 11(32), 2403399.
https://doi.org/10.1002/advs.202403399
17. Kanungo, A., & Acharya, S. (2025). Leveraging the role of nanotechnology to tackle SSIs in post-operative Breast cancer. Next Nanotechnology, 8, 100247.
18. Askari, E., Seyfoori, A., Amereh, M., Gharaie, S. S., Ghazali, H. S., Ghazali, Z. S., ... & Akbari, M. (2020). Stimuli-responsive hydrogels for local post-surgical drug delivery. Gels, 6(2), 14.
https://doi.org/10.3390/gels6020014
19. Aquib, M., Juthi, A. Z., Farooq, M. A., Ali, M. G., Janabi, A. H. W., Bavi, S., ... & Wang, B. (2020). Advances in local and systemic drug delivery systems for post-surgical cancer treatment. Journal of Materials Chemistry B, 8(37), 8507-8518.
20. Fatehi Hassanabad, A., Zarzycki, A. N., Jeon, K., Dundas, J. A., Vasanthan, V., Deniset, J. F., & Fedak, P. W. (2021). Prevention of post-operative adhesions: a comprehensive review of present and emerging strategies. Biomolecules, 11(7), 1027.
https://doi.org/10.3390/biom11071027
21. Occhiutto, M. L., Maranhão, R. C., Costa, V. P., & Konstas, A. G. (2020). Nanotechnology for medical and surgical glaucoma therapy-a review. Advances in therapy, 37(1), 155-199.
22. Huang, L., Zhang, T., Wang, K., Chang, B., Fu, D., & Chen, X. (2024). Postoperative Multimodal Analgesia Strategy for enhanced recovery after surgery in Elderly Colorectal Cancer patients. Pain and Therapy, 13(4), 745-766.
https://doi.org/10.1007/s40122-024-00619-0
23. Veg, E., Hashmi, K., Raza, S., Joshi, S., Rahman Khan, A., & Khan, T. (2025). The role of nanomaterials in diagnosis and targeted drug delivery. Chemistry & Biodiversity, 22(1), e202401581.
24. Bekiaridou, A., Karlafti, E., Oikonomou, I. M., Ioannidis, A., & Papavramidis, T. S. (2021). Probiotics and their effect on surgical wound healing: a systematic review and new insights into the role of nanotechnology. Nutrients, 13(12), 4265.
https://doi.org/10.3390/nu13124265
25. Mariappan, N. (2019). Recent trends in nanotechnology applications in surgical specialties and orthopedic surgery. Biomedical and Pharmacology Journal, 12(3), 1095-1127.
26. Chen, J., Tang, X., Wang, Z., Perez, A., Yao, B., Huang, K., ... & King, M. W. (2023). Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions. Bioengineering & Translational Medicine, 8(6), e10565.
https://doi.org/10.1002/btm2.10565
27. Dkhar, L. K., Bartley, J., White, D., & Seyfoddin, A. (2018). Intranasal drug delivery devices and interventions associated with post-operative endoscopic sinus surgery. Pharmaceutical Development and Technology, 23(3), 282-294.
28. Feng, Y., Zhang, Z., Tang, W., & Dai, Y. (2023, October). Gel/hydrogel?based in situ biomaterial platforms for cancer postoperative treatment and recovery. In Exploration (Vol. 3, No. 5, p. 20220173).
https://doi.org/10.1002/exp.20220173
29. Alavi, S. E., Alavi, S. Z., Nisa, M. U., Koohi, M., Raza, A., & Ebrahimi Shahmabadi, H. (2024). Revolutionizing wound healing: exploring scarless solutions through drug delivery innovations. Molecular Pharmaceutics, 21(3), 1056-1076.
30. Shah, T. J., Conway, M. D., & Peyman, G. A. (2018). Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clinical Ophthalmology, 2223-2235.
https://doi.org/10.2147/opth.s165722
31. Mahooti, M., Safaei, F., Firuzpour, F., Abdolalipour, E., Zare, D., Sanami, S., ... & Mirdamadi, S. (2025). Exploring the role of inflammatory regulatory effects of probiotics as adjuvants in cancer development management with considering possible challenges: a comprehensive review. Inflammopharmacology, 1-19.
32. Wang, H., Zang, J., Zhao, Z., Zhang, Q., & Chen, S. (2021). The advances of neutrophil-derived effective drug delivery systems: a key review of managing tumors and inflammation. International journal of nanomedicine, 7663-7681.
https://doi.org/10.2147/ijn.s328705
33. Jayaprakash, S., Gokul, Y., Madhaiyan, P., Bharathy, P., & Cheriyan, B. V. (2025). Biofabricated Nanotherapeutics for Gangrene: A Convergence of Organic Nanocarriers and Trace Element-Based Systems. Sustainable Chemistry for Climate Action, 100130.
34. Pormohammad, A., Monych, N. K., Ghosh, S., Turner, D. L., & Turner, R. J. (2021). Nanomaterials in wound healing and infection control. Antibiotics, 10(5), 473.
https://doi.org/10.3390/antibiotics10050473
35. Ho, G. T., Cartwright, J. A., Thompson, E. J., Bain, C. C., & Rossi, A. G. (2020). Resolution of inflammation and gut repair in IBD: translational steps towards complete mucosal healing. Inflammatory bowel diseases, 26(8), 1131-1143.
36. Wu, K. Y., Fujioka, J. K., Gholamian, T., Zaharia, M., & Tran, S. D. (2023). Suprachoroidal injection: a novel approach for targeted drug delivery. Pharmaceuticals, 16(9), 1241.
https://doi.org/10.3390/ph16091241
37. Bairagi, R. D., Reon, R. R., Hasan, M. M., Sarker, S., Debnath, D., Rahman, M. T., ... & Acharzo, A. K. (2025). Ocular drug delivery systems based on nanotechnology: a comprehensive review for the treatment of eye diseases. Discover Nano, 20(1), 1-43.
https://doi.org/10.1186/s11671-025-04234-6
38. Wang, Z., Zhang, N., Lin, P., Xing, Y., & Yang, N. (2024). Recent advances in the treatment and delivery system of diabetic retinopathy. Frontiers in Endocrinology, 15, 1347864.
39. Elendu, C., Amaechi, D. C., Elendu, T. C., Amaechi, E. C., Elendu, I. D., Omeludike, J. C., ... & Okafor, S. U. (2025). Essential information about nanotechnology in cardiology. Annals of Medicine and Surgery, 87(2), 748-779.
https://doi.org/10.1097/ms9.0000000000002867
40. Cruz, D. R. D., Zheng, A., Debele, T., Larson, P., Dion, G. R., & Park, Y. C. (2024). Drug delivery systems for wound healing treatment of upper airway injury. Expert opinion on drug delivery, 21(4), 573-591.
41. Zhang, A., Jiang, X., Xiong, B., Chen, J., Liu, X., Wang, S., ... & Li, W. (2025). Sustained?Release Photothermal Microneedles for Postoperative Incisional Analgesia and Wound Healing via Hydrogen Therapy. Advanced Science, e03698.
https://doi.org/10.1002/advs.202503698
42. Matei, A. M., Caruntu, C., Tampa, M., Georgescu, S. R., Matei, C., Constantin, M. M., ... & Caruntu, A. (2021). Applications of nanosized-lipid-based drug delivery systems in wound care. Applied Sciences, 11(11), 4915.
43. Mokhtari, L., Hosseinzadeh, F., & Nourazarian, A. (2024). Biochemical implications of robotic surgery: a new frontier in the operating room. Journal of Robotic Surgery, 18(1), 91.
https://doi.org/10.1007/s11701-024-01861-6
44. Wu, K. Y., Khan, S., Liao, Z., Marchand, M., & Tran, S. D. (2024). Biopolymeric Innovations in Ophthalmic Surgery: Enhancing Devices and Drug Delivery Systems. Polymers, 16(12), 1717.
45. Chilwant, M., Paganini, V., Di Gangi, M., Brignone, S. G., Chetoni, P., Burgalassi, S., ... & Tampucci, S. (2025). From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing. Pharmaceuticals, 18(8), 1093.
https://doi.org/10.3390/ph18081093
46. Liu, B., & Wang, D. A. (2025). Application of Nanomaterials in the Repair and Regeneration of Lymphatic Organs and Corresponding Biophysical Simulation Strategies. Advanced NanoBiomed Research, 5(2), 2400081.
47. Liu, K. S., Kao, C. W., Tseng, Y. Y., Chen, S. K., Lin, Y. T., Lu, C. J., & Liu, S. J. (2021). Assessment of antimicrobial agents, analgesics, and epidermal growth factors-embedded anti-adhesive poly (lactic-co-glycolic acid) nanofibrous membranes: In vitro and in vivo studies. International journal of nanomedicine, 4471-4480.
https://doi.org/10.2147/ijn.s318083
48. Li, S., Chen, L., & Fu, Y. (2023). Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. Journal of nanobiotechnology, 21(1), 232.
49. Wang, Y., Zhang, H., Qiang, H., Li, M., Cai, Y., Zhou, X., ... & Yu, Z. (2024). Innovative biomaterials for bone tumor treatment and regeneration: tackling postoperative challenges and charting the path forward. Advanced Healthcare Materials, 13(16), 2304060.
https://doi.org/10.1002/adhm.202304060
50. Zhang, Q., Zhang, Y., Chen, H., Sun, L. N., Zhang, B., Yue, D. S., & Zhang, Z. F. (2024). Injectable hydrogel with doxorubicin-loaded ZIF-8 nanoparticles for tumor postoperative treatments and wound repair. Scientific Reports, 14(1), 9983.
https://doi.org/10.1038/s41598-024-57664-0
51. Pawar, R., Pathan, A., Nagaraj, S., Kapare, H., Giram, P., & Wavhale, R. (2023). Polycaprolactone and its derivatives for drug delivery. Polymers for advanced technologies, 34(10), 3296-3316.
https://doi.org/10.1002/pat.6140
52. Sheng, S., Jin, L., Zhang, Y., Sun, W., Mei, L., Zhu, D., ... & Lv, F. (2024). A twindrive precise delivery system of platelet-neutrophil hybrid membrane regulates macrophage combined with CD47 blocking for postoperative immunotherapy. ACS nano, 18(6), 4981-4992.
https://doi.org/10.1021/acsnano.3c10862
53. Le Franc, A., Da Silva, A., & Lepetre-Mouelhi, S. (2024). Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Delivery and Translational Research, 14(8), 2112-2145.
https://doi.org/10.1007/s13346-024-01615-9
54. Zhao, Y., Zhang, H., Zhang, Q., & Tao, H. (2023). Research progress of neutrophil-mediated drug delivery strategies for inflammation-related disease. Pharmaceutics, 15(7), 1881.
https://doi.org/10.3390/pharmaceutics15071881
55. Hrynyshyn, A., Simões, M., & Borges, A. (2022). Biofilms in surgical site infections: recent advances and novel prevention and eradication strategies. Antibiotics, 11(1), 69.
https://doi.org/10.3390/antibiotics11010069
56. Jehanzeb, M. (2024). The future of spine surgery: technological innovations and advancements: A comprehensive review. Romanian Neurosurgery, 102-108.
https://doi.org/10.33962/roneuro-2024-017
57. Choi, H., Choi, W. S., & Jeong, J. O. (2024). A review of advanced hydrogel applications for tissue engineering and drug delivery systems as biomaterials. Gels, 10(11), 693.
https://doi.org/10.3390/gels10110693
58. Astaneh, M. E., & Fereydouni, N. (2024). Silver nanoparticles in 3D printing: a new frontier in wound healing. ACS omega, 9(40), 41107-41129.
https://doi.org/10.1021/acsomega.4c04961
59. Li, R., Li, D., Wang, H., Chen, K., Wang, S., Xu, J., & Ji, P. (2022). Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem cell research & therapy, 13(1), 149.
https://doi.org/10.1186/s13287-022-02823-1
60. Wang, Z., Zhai, B., Sun, J., Zhang, X., Zou, J., Shi, Y., & Guo, D. (2024). Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug delivery, 31(1), 2400476.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
