Prime Editing the Non-Coding Genome: A Molecular Review of Correcting Regulatory Mutations for Precision Cancer Therapy

Authors

  • Alina Mansoor Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences Lahore, Pakistan
  • Midhat Narmeen Mustafa Department of Zoology, Government College University Faisalabad, Pakistan
  • Abdul Ahad Mehboob Department of Cancer Screening, Royal Surrey NHS Foundation Trust, Surrey, England
  • Nureen Shafaqat Nuclear College of Science and Engineering, Harbin Engineering University of China
  • Sanam Dehraj Department of Microbiology, Sindh University Jamshoro, Pakistan
  • Amna Noor Department of Pathology, Rawalpindi Medical University, Rawalpindi, Pakistan
  • Sehresh Murtaza Department of Bioscience, COMSATS University Islamabad, Pakistan
  • Mahnoor Javed Department of Microbiology and Molecular Genetics University of Okara, Pakistan

DOI:

https://doi.org/10.70749/ijbr.v3i10.2553

Keywords:

Prime Editing, Non-Coding Genome, Precision Cancer Therapy, RNAs

Abstract

Prime editing, a flexible "search-and-replace" genome editing technique, has become a potent instrument for accurately altering the genome without the need for donor templates or double-strand DNA breaks. The vast non-coding regulatory genome, which includes enhancers, promoters, untranslated regions (UTRs), and non-coding RNAs, is now understood to be a major driver of tumorigenesis, despite the fact that the majority of cancer research has concentrated on protein-coding mutations. Oncogene dysregulation, tumor suppressor silencing, and treatment resistance can all result from mutations in these areas. The convergence of these two fields is examined in this review, which also describes the use of prime editing to fix particular, harmful non-coding mutations. In order to restore normal gene expression patterns, we describe methods for focusing on regulatory elements, present a landscape of non-coding drivers in cancer, and talk about the fundamentals of prime editing. Lastly, we look at delivery methods, therapeutic factors, and how prime editing might be incorporated into the precision oncology paradigm going forward. We emphasize how prime editing could help usher in a new era of targeted therapy and functional genomics.

Downloads

Download data is not yet available.

References

1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013 Mar 29;339(6127):1546–58.

https://doi.org/10.1126/science.1235122

2. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT Promoter Mutations in Familial and Sporadic Melanoma. Science. 2013 Feb 22;339(6122):959–61.

https://doi.org/10.1126/science.1230062

3. Northcott PA, Lee C, Zichner T, Stütz AM, Erkek S, Kawauchi D, et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature. 2014 July;511(7510):428–34.

https://doi.org/10.1093/neuonc/nou256.22

4. Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O, Tiao G, et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature. 2020 Feb 6;578(7793):102–11.

5. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013 Sept;31(9):822–6.

https://doi.org/10.1038/nbt.2623

6. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019 Dec 5;576(7785):149–57.

https://doi.org/10.1038/s41586-019-1711-4

7. Escudero L, Llort A, Arias A, Diaz-Navarro A, Martínez-Ricarte F, Rubio-Perez C, et al. Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nat Commun. 2020 Oct 27;11(1):5376.

https://doi.org/10.1038/s41467-020-19175-0

8. Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet. 2013 Apr;14(4):288–95.

https://doi.org/10.1038/nrg3458

9. Mayr C. What Are 3′ UTRs Doing? Cold Spring Harb Perspect Biol. 2019 Oct;11(10):a034728.

https://doi.org/10.1101/cshperspect.a034728

10. Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell. 2019 Nov;179(5):1033–55.

https://doi.org/10.1016/j.cell.2019.10.017

11. Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM, Hockemeyer D. Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife. 2015 July 21;4:e07918.

https://doi.org/10.7554/elife.07918

12. Ryan RJH, Drier Y, Whitton H, Cotton MJ, Kaur J, Issner R, et al. Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma. Cancer Discov. 2015 Oct 1;5(10):1058–71.

https://doi.org/10.1158/2159-8290.cd-15-0370

13. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA Complementary Site in the KRAS 3′ Untranslated Region Increases Non–Small Cell Lung Cancer Risk. Cancer Res. 2008 Oct 15;68(20):8535–40.

https://doi.org/10.1158/0008-5472.can-08-2129

14. Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, et al. PVT1 dependence in cancer with MYC copy-number increase. Nature. 2014 Aug;512(7512):82–6.

https://doi.org/10.1038/nature13311

15. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013 July;31(7):397–405.

16. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013 Sept;31(9):822–6.

https://doi.org/10.1038/nbt.2623

17. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464–71.

18. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019 Dec 5;576(7785):149–57.

https://doi.org/10.1038/s41586-019-1711-4

19. Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet. 2023 Mar;24(3):161–77.

20. Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021 Oct;184(22):5635-5652.e29.

https://doi.org/10.1016/j.cell.2021.09.018

21. Nelson JW, Randolph PB, Shen SP, Everette KA, Chen PJ, Anzalone AV, et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol. 2022 Mar;40(3):402–10.

22. Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021 Oct;184(22):5635-5652.e29.

https://doi.org/10.1016/j.cell.2021.09.018

23. Vertex snaps up diabetes stem cell rival. Nat Biotechnol. 2022 Aug;40(8):1161–1161.

24. Stern JL, Theodorescu D, Vogelstein B, Papadopoulos N, Cech TR. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev. 2015 Nov 1;29(21):2219–24.

https://doi.org/10.1101/gad.269498.115

25. Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y, Stütz AM, et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat Genet. 2017 Jan;49(1):65–74.

26. Huang YH, Chen CW, Sundaramurthy V, Słabicki M, Hao D, Watson CJ, et al. Systematic Profiling of DNMT3A Variants Reveals Protein Instability Mediated by the DCAF8 E3 Ubiquitin Ligase Adaptor. Cancer Discov. 2022 Jan 1;12(1):220–35.

https://doi.org/10.1158/2159-8290.cd-21-0560

27. Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y, et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013 Oct 31;122(18):3169–77.

28. Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature. 2014 Sept;513(7516):120–3.

https://doi.org/10.1038/nature13695

29. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 2009 Dec 1;23(23):2700–4.

30. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science. 2010 Aug 6;329(5992):689–93.

https://doi.org/10.1126/science.1192002

31. Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, et al. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell. 2018 May;173(6):1398-1412.e22.

32. Sur I, Taipale J. The role of enhancers in cancer. Nat Rev Cancer. 2016 Aug;16(8):483–93.

https://doi.org/10.1038/nrc.2016.62

33. Gorkin DU, Barozzi I, Zhao Y, Zhang Y, Huang H, Lee AY, et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature. 2020 July 30;583(7818):744–51.

34. Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, et al. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun. 2022 Oct 12;13(1):6000.

https://doi.org/10.1038/s41467-022-33536-x

35. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021 Aug 5;385(6):493–502.

36. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019 May;18(5):358–78.

https://doi.org/10.1038/s41573-019-0012-9

37. Jin S, Lin Q, Luo Y, Zhu Z, Liu G, Li Y, et al. Genome-wide specificity of prime editors in plants. Nat Biotechnol. 2021 Oct;39(10):1292–9.

38. Hsu JY, Grünewald J, Szalay R, Shih J, Anzalone AV, Lam KC, et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun. 2021 Feb 15;12(1):1034.

https://doi.org/10.1038/s41467-021-21337-7

39. Liu P, Liang SQ, Zheng C, Mintzer E, Zhao YG, Ponnienselvan K, et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun. 2021 Apr 9;12(1):2121.

40. Yu SY, Carlaw T, Thomson T, Birkenshaw A, Basha G, Kurek D, et al. A luciferase reporter mouse model to optimize in vivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Mol Ther. 2023 Apr;31(4):1159–66.

https://doi.org/10.1016/j.ymthe.2023.02.009

41. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017 Apr 7;7(1):737.

42. Oxnard GR, Hu Y, Mileham KF, Husain H, Costa DB, Tracy P, et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients With EGFR T790M–Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncol. 2018 Nov 1;4(11):1527.

https://doi.org/10.1001/jamaoncol.2018.2969

43. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020 Feb 6;578(7793):94–101.

44. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018 July;18(7):407–18.

https://doi.org/10.1038/s41568-018-0007-6

45. Li Q, Wang X, Dou Z, Yang W, Huang B, Lou J, et al. Protein Databases Related to Liquid–Liquid Phase Separation. Int J Mol Sci. 2020 Sept 16;21(18):6796.

46. Zhu Y, Cao H, Wang H, Mu W. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges. Curr Opin Biotechnol. 2022 Dec; 78:102841.

https://doi.org/10.1016/j.copbio.2022.102841

47. Zhu Y, Cao H, Wang H, Mu W. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges. Curr Opin Biotechnol. 2022 Dec; 78:102841.

48. Lazzarotto CR, Malinin NL, Li Y, Zhang R, Yang Y, Lee G, et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat Biotechnol. 2020 Nov;38(11):1317–27.

https://doi.org/10.1038/s41587-020-0555-7

49. Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer. 2022 Mar 18;21(1):78.

https://doi.org/10.1186/s12943-022-01559-z

50. Liu P, Liang SQ, Zheng C, Mintzer E, Zhao YG, Ponnienselvan K, et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun. 2021 Apr 9;12(1):2121.

https://doi.org/10.1038/s41467-021-22295-w

51. Awah CU, Glemaud Y, Levine F, Yang K, Ansary A, Dong F, et al. Destabilized 3’UTR elements therapeutically degrade ERBB2 mRNA in drug-resistant ERBB2+ cancer models. Front Genet. 2023 June 9; 14:1184600.

https://doi.org/10.3389/fgene.2023.1184600

52. Schene IF, Joore IP, Oka R, Mokry M, Van Vugt AHM, Van Boxtel R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun. 2020 Oct 23;11(1):5352.

https://doi.org/10.1038/s41467-020-19136-7

53. Li X, Chen W, Martin BK, Calderon D, Lee C, Choi J, et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Cell. 2024 May;187(10):2411-2427.e25.

https://doi.org/10.1016/j.cell.2024.03.020

54. Awah CU, Mun JS, Paragodaarachchi A, Boylu B, Ochu C, Matsui H, et al. The Engineered Drug 3′UTRMYC1-18 Degrades the c-MYC-STAT5A/B-PD-L1 Complex In Vivo to Inhibit Metastatic Triple-Negative Breast Cancer. Cancers. 2024 July 26;16(15):2663.

https://doi.org/10.3390/cancers16152663

Downloads

Published

2025-10-30

How to Cite

Mansoor, A., Mustafa, M. N., Mehboob, A. A., Shafaqat, N., Dehraj, S., Noor, A., Murtaza, S., & Javed, M. (2025). Prime Editing the Non-Coding Genome: A Molecular Review of Correcting Regulatory Mutations for Precision Cancer Therapy. Indus Journal of Bioscience Research, 3(10), 276-282. https://doi.org/10.70749/ijbr.v3i10.2553