Predictive Data Modeling of CISD2 Activation for Neuroprotection: Insights from In Silico and Machine Learning Approaches
DOI:
https://doi.org/10.70749/ijbr.v3i10.2557Keywords:
CISD2, Neurodegeneration, Mitochondrial Integrity, Oxidative Stress, Alzheimer's DiseaseAbstract
The optimal operation of mitochondria and the endoplasmic reticulum (ER) relies on CISD2, also known as CDGSH iron-sulfur domain 2. Changes in CISD2 relate to neurodegenerative diseases like Parkinson's disease (PD) & Alzheimer's disease (AD). Found primarily in the endoplasmic reticulum including mitochondria, CISD2 is a component within the CDGSH protein family as well as alters redox balance, mitochondrial integrity, including calcium (Ca2+) homeostasis within these organelles. Often marked by mitochondrial malfunction, oxidative stress, and cell death, neurodegenerative diseases cover regions where CISD2 is absolutely important. Amyloid-beta (Aβ) accumulates in Alzheimer's disease to cause mitochondrial calcium excess, oxidative stress, and mitochondrial damage. This stimulates the mitochondrial permeability transition pore (MPTP), releasing cytochrome c (CytC) and so activating caspases (CASP3 and CASP9), hence causing neuronal death. By means of the IRE1α and PERK pathways, Aβ disturbs Ca2+ homeostasis, induces the unfolded protein response (UPR), and promotes caspase 12 (CASP12)-mediated death. CISD2 mitigates oxidative damage and contributes to the stabilization of the mitochondrial membrane, thereby functioning as a protective agent against these phenomena. In neurodegenerative illnesses, diminished CISD2 levels exacerbate oxidative stress and mitochondrial injury, hence leading to neuronal death. Activated microglia and astrocytes, responding to Aβ toxicity, induce neuroinflammation, which accelerates dementia. Enhancing CISD2 expression has been shown to safeguard mitochondria, reduce reactive oxygen species (ROS), and prevent cell death. Furthermore, by maintaining Ca2+ homeostasis, CISD2 mitigates ER stress and pro-apoptotic signaling; hence, elevated CISD2 expression indicates a protective effect against neurodegeneration by diminishing oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress. The natural flavonoid Liquiritigenin, found in licorice root, significantly enhances the expression of CISD2, hence augmenting mitochondrial integrity and stabilizing the endoplasmic reticulum in neurodegenerative models. Molecular docking and in silico research indicate that liquiritigenin and other small molecules bind to CISD2, hence activating its protective functions. Liquiritigenin reduces oxidative stress, mitochondrial damage, and endoplasmic reticulum stress by increasing CISD2 expression, hence decelerating neurodegeneration. Targeting CISD2 with Liquiritigenin or analogous chemicals may reduce neuroinflammation and improve mitochondrial health, thereby offering a viable treatment strategy for Alzheimer's disease and other neurodegenerative illnesses.
Downloads
References
1. Chen, Y., Wu, C., Kirby, R., Kao, C., & Tsai, T. (2010). A role for the CISD2 gene in lifespan control and human disease. Annals of the New York Academy of Sciences, 1201(1), 58-64.
https://doi.org/10.1111/j.1749-6632.2010.05619.x
2. Shen, Z., Huang, Y., Teng, Y., Wang, T., Kao, C., Yeh, C., & Tsai, T. (2021). CISD2 maintains cellular homeostasis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1868(4), 118954.
https://doi.org/10.1016/j.bbamcr.2021.118954
3. Chen, B., Shen, S., Wu, J., Hua, Y., Kuang, M., Li, S., & Peng, B. (2015). CISD2 associated with proliferation indicates negative prognosis in patients with hepatocellular carcinoma. International journal of clinical and experimental pathology, 8(10), 13725.
https://pmc.ncbi.nlm.nih.gov/articles/PMC4680546/
4. Yeh, C. H., Shen, Z. Q., Lin, C. C., Lu, C. K., & Tsai, T. F. (2022). Rejuvenation: turning back time by enhancing CISD2. International Journal of Molecular Sciences, 23(22), 14014.
https://doi.org/10.3390/ijms232214014
5. Chen, Y., Kao, C., Chen, Y., Wang, C., Wu, C., Tsai, C., Liu, F., Yang, C., Wei, Y., Hsu, M., Tsai, S., & Tsai, T. (2009). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes & Development, 23(10), 1183-1194.
https://doi.org/10.1101/gad.1779509
6. Chen, Y., Kao, C., Kirby, R., & Tsai, T. (2009). Cisd2 mediates mitochondrial integrity and life span in mammals. Autophagy, 5(7), 1043-1045.
https://doi.org/10.4161/auto.5.7.9351
7. Kim, E. H., Shin, D., Lee, J., Jung, A. R., & Roh, J. (2018). CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Letters, 432, 180-190.
https://doi.org/10.1016/j.canlet.2018.06.018
8. Liao, H., Liao, B., & Zhang, H. (2021). CISD2 plays a role in age-related diseases and cancer. Biomedicine & Pharmacotherapy, 138, 111472.
https://doi.org/10.1016/j.biopha.2021.111472
9. Lin, C., Chiang, T., Sun, Y., & Lin, M. (2019). Protective effects of CISD2 and influence of curcumin on CISD2 expression in aged animals and inflammatory cell model. Nutrients, 11(3), 700.
https://doi.org/10.3390/nu11030700
10. Sun, C., Lee, S., Kao, C., Chen, L., Shen, Z., Lai, C., Tzeng, T., Pang, J. S., Chiu, W., & Tsai, T. (2021). Cisd2 plays an essential role in corneal epithelial regeneration. EBioMedicine, 73, 103654.
https://doi.org/10.1016/j.ebiom.2021.103654
11. Wu, C., Chen, Y., Wang, C., Kao, C., Zhuang, H., Chen, C., Chen, L., Kirby, R., Wei, Y., Tsai, S., & Tsai, T. (2012). A persistent level of Cisd2 extends healthy lifespan and delays aging in mice. Human Molecular Genetics, 21(18), 3956-3968.
https://doi.org/10.1093/hmg/dds210
12. Shen, Z., Chen, Y., Chen, J., Jou, Y., Wu, P., Kao, C., Wang, C., Huang, Y., Chen, C., Huang, T., Shyu, Y., Tsai, S., Kao, L., & Tsai, T. (2017). CISD2 Haploinsufficiency disrupts calcium homeostasis, causes nonalcoholic fatty liver disease, and promotes hepatocellular carcinoma. Cell Reports, 21(8), 2198-2211.
https://doi.org/10.1016/j.celrep.2017.10.099
13. Yeh, C., Shen, Z., Hsiung, S., Wu, P., Teng, Y., Chou, Y., Fang, S., Chen, C., Yan, Y., Kao, L., Kao, C., & Tsai, T. (2019). Cisd2 is essential to delaying cardiac aging and to maintaining heart functions. PLOS Biology, 17(10), e3000508.
https://doi.org/10.1371/journal.pbio.3000508
14. Chen, Y., Chou, T., Lin, I., Chen, C., Kao, C., Huang, G., Chen, L., Wang, P., Lin, C., & Tsai, T. (2020). Upregulation of Cisd2 attenuates Alzheimer's‐related neuronal loss in mice. The Journal of Pathology, 250(3), 299-311.
https://doi.org/10.1002/path.5374
15. Huang, Y., Shen, Z., Huang, C., Lin, C., & Tsai, T. (2021). Cisd2 slows down liver aging and attenuates age‐related metabolic dysfunction in male mice. Aging Cell, 20(12).
https://doi.org/10.1111/acel.13523
16. Karmi, O., Sohn, Y., Zandalinas, S. I., Rowland, L., King, S. D., Nechushtai, R., & Mittler, R. (2021). Disrupting CISD2 function in cancer cells primarily impacts mitochondrial labile iron levels and triggers TXNIP expression. Free Radical Biology and Medicine, 176, 92-104.
https://doi.org/10.1016/j.freeradbiomed.2021.09.013
17. Li, B., Wei, S., Yang, L., Peng, X., Ma, Y., Wu, B., Fan, Q., Yang, S., Li, X., Jin, H., Tang, S., Huang, M., Li, H., & Liu, J. (2021). CISD2 promotes resistance to sorafenib-induced Ferroptosis by regulating autophagy in hepatocellular carcinoma. Frontiers in Oncology, 11.
https://doi.org/10.3389/fonc.2021.657723
18. Li, Y., Xu, B., Ren, X., Wang, L., Xu, Y., Zhao, Y., Yang, C., Yuan, C., Li, H., Tong, X., Wang, Y., & Du, J. (2023). Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62–keap1–NRF2 pathway. Cellular & Molecular Biology Letters, 28(1).
https://doi.org/10.1186/s11658-023-00478-1
19. Liu, L., Xia, M., Wang, J., Zhang, W., Zhang, Y., & He, M. (2014). CISD2 expression is a novel marker correlating with pelvic lymph node metastasis and prognosis in patients with early-stage cervical cancer. Medical Oncology, 31(9).
https://doi.org/10.1007/s12032-014-0183-5
20. Mozzillo, E., Delvecchio, M., Carella, M., Grandone, E., Palumbo, P., Salina, A., Aloi, C., Buono, P., Izzo, A., D’Annunzio, G., Vecchione, G., Orrico, A., Genesio, R., Simonelli, F., & Franzese, A. (2014). A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in wolfram syndrome type 2. BMC Medical Genetics, 15(1).
https://doi.org/10.1186/1471-2350-15-88
21. Nobili, A., Krashia, P., & D'Amelio, M. (2020). Cisd2: a promising new target in Alzheimer's disease. The Journal of Pathology, 251(2), 113-116.
https://doi.org/10.1002/path.5436
22. Wang, L., Ouyang, F., Liu, X., Wu, S., Wu, H., Xu, Y., Wang, B., Zhu, J., Xu, X., & Zhang, L. (2015). Overexpressed CISD2 has prognostic value in human gastric cancer and promotes gastric cancer cell proliferation and tumorigenesis via AKT signaling pathway. Oncotarget, 7(4), 3791-3805.
https://doi.org/10.18632/oncotarget.6302
23. Chang, N. C., Nguyen, M., & Shore, G. C. (2012). BCL2-CISD2: An ER complex at the nexus of autophagy and calcium homeostasis? Autophagy, 8(5), 856-857.
https://doi.org/10.4161/auto.20054
24. Huang, Y., Shen, Z., Huang, C., Teng, Y., Lin, C., & Tsai, T. (2021). Cisd2 protects the liver from oxidative stress and ameliorates western diet-induced nonalcoholic fatty liver disease. Antioxidants, 10(4), 559.
https://doi.org/10.3390/antiox10040559
25. Huang, Y., Shen, Z., Wu, C., Teng, Y., Liao, C., Kao, C., Chen, L., Lin, C., & Tsai, T. (2017). Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging. Aging Cell, 17(1).
https://doi.org/10.1111/acel.12705
26. Shao, F., Li, Y., Hu, W., Yu, J., Wu, H., Ying, K., Xia, J., & Du, J. (2021). Downregulation of CISD2 has prognostic value in non-small cell lung cancer and inhibits the Tumorigenesis by inducing mitochondrial dysfunction. Frontiers in Oncology, 10.
https://doi.org/10.3389/fonc.2020.595524
27. Sun, Y., Jiang, Y., Huang, J., Chen, H., Liao, Y., & Yang, Z. (2017). CISD2 enhances the chemosensitivity of gastric cancer through the enhancement of 5‐FU‐induced apoptosis and the inhibition of autophagy by AKT/mTOR pathway. Cancer Medicine, 6(10), 2331-2346.
https://doi.org/10.1002/cam4.1169
28. Teng, Y., Wang, J., Chi, Y., & Tsai, T. (2020). Exercise and the Cisd2 Prolongevity gene: Two promising strategies to delay the aging of skeletal muscle. International Journal of Molecular Sciences, 21(23), 9059.
https://doi.org/10.3390/ijms21239059
29. Yang, L., Hong, S., Wang, Y., He, Z., Liang, S., Chen, H., He, S., Wu, S., Song, L., & Chen, Y. (2016). A novel prognostic score model incorporating CDGSH iron sulfur domain2 (CISD2) predicts risk of disease progression in laryngeal squamous cell carcinoma. Oncotarget, 7(16), 22720-22732.
https://doi.org/10.18632/oncotarget.8150
30. Yeh, C., Shen, Z., Wang, T., Kao, C., Teng, Y., Yeh, T., Lu, C., & Tsai, T. (2022). Hesperetin promotes longevity and delays aging via activation of Cisd2 in naturally aged mice. Journal of Biomedical Science, 29(1).
https://doi.org/10.1186/s12929-022-00838-7
31. Zhang, C., Lin, Q., Li, C., Qiu, Y., Chen, J., & Zhu, X. (2023). Comprehensive analysis of the prognostic implication and immune infiltration of CISD2 in diffuse large B-cell lymphoma. Frontiers in Immunology, 14.
https://doi.org/10.3389/fimmu.2023.1277695
32. Zhang, F., Cai, H., Liu, H., Gao, S., Wang, B., Hu, Y., Cheng, H., Liu, J., Gao, Y., & Hong, W. (2022). High expression of CISD2 in relation to adverse outcome and abnormal immune cell infiltration in glioma. Disease Markers, 2022, 1-25.
https://doi.org/10.1155/2022/8133505
33. Cheng, Y., Lin, F., Wang, C., Hsiao, C., Chen, H., Kuo, H., Tsai, T., & Chiou, S. (2016). Recovery of oxidative stress-induced damage in cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel. Biomaterials, 103, 207-218.
https://doi.org/10.1016/j.biomaterials.2016.06.060
34. Huang, C., Huang, Y., Shen, Z., Lin, C., & Tsai, T. (2021). Cisd2 preserves the youthful pattern of the liver Proteome during natural aging of mice. Biomedicines, 9(9), 1229.
https://doi.org/10.3390/biomedicines9091229
35. Lin, M. (2020). CISD2 attenuates inflammation and regulates Microglia polarization in EOC Microglial cells—As a potential therapeutic target for neurodegenerative dementia. Frontiers in Aging Neuroscience, 12.
https://doi.org/10.3389/fnagi.2020.00260
36. Salameh, M., Riquier, S., Guittet, O., Huang, M., Vernis, L., Lepoivre, M., & Golinelli-Cohen, M. (2021). New insights of the NEET protein CISD2 reveals distinct features compared to its close mitochondrial homolog mitoNEET. Biomedicines, 9(4), 384.
https://doi.org/10.3390/biomedicines9040384
37. Salameh, M., Riquier, S., Guittet, O., Huang, M., Vernis, L., Lepoivre, M., & Golinelli-Cohen, M. (2021). New insights of the NEET protein CISD2 reveals distinct features compared to its close mitochondrial homolog mitoNEET. Biomedicines, 9(4), 384.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
