Spirulina Algae: A Sustainable Solution for Enhancing Global Protein Nutrition

Authors

  • Noor Ul Ain National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Hafiza Bazlah Amjad National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Shahab Ud Din Chohan Department is Human Nutrition and Dietetics, Iqra National University, Peshawar, KP, Pakistan.
  • Abdul Razaq Department is Human Nutrition and Dietetics, Iqra National University, Peshawar, KP, Pakistan.
  • Maryam Iftikhar Department of Human Nutrition, The University of Agriculture Peshawar, KP, Pakistan.
  • Hamna Batool Department of Food Engineering, University of Agriculture Faisalabad, Punjab, Pakistan.
  • Ammara Khalid Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Punjab, Pakistan.
  • Anum Tauqir Department of Nutrition and Dietetics, University of Management and Technology, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i10.2569

Keywords:

Food and Nutrition, Protein Sources, Cyanobacteria, Arthrospira, Spirulina, Protein Crisis, Bioactive Compounds.

Abstract

The growing global population further complicates the challenge of achieving food and nutrition security, especially surrounding the demand for sustainable protein sources. Current sources of protein are limited by their relatively high environmental impact. We argue that the cyanobacteria, Arthrospira, or "Spirulina," are an important sustainable alternative to the current protein crisis. Spirulina is unique due to its exceptional nutritional value, high protein content with a complete amino acid profile, superior digestibility, and high levels of bioactive compounds. It can be produced on non-arable land, using saline or wastewater, while sequestering atmospheric CO₂, and offering a framework for a circular bioeconomy. In this article, we will thoroughly examine the biology, nutritional efficacy, sustainable cultivation systems, and unique biotechnological applications of Spirulina. We will also detail product development, the socio-economic implications, and its regulatory situation. In summary, Spirulina represents an agent of change to improve global protein nutrition and support increased environmental sustainability.

Downloads

Download data is not yet available.

References

1. The State of Food Security and Nutrition in the World 2021 [Internet]. FAO, IFAD, UNICEF, WFP and WHO; 2021.

http://www.fao.org/documents/card/en/c/cb4474en

2. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260-20264.

https://doi.org/10.1073/pnas.1116437108

3. Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992.

https://doi.org/10.1126/science.aaq0216

4. Caporgno, M. P., & Mathys, A. (2018). Trends in Microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5.

https://doi.org/10.3389/fnut.2018.00058

5. Becker, E. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210.

https://doi.org/10.1016/j.biotechadv.2006.11.002

6. Smetana, S., Sandmann, M., Rohn, S., Pleissner, D., & Heinz, V. (2017). Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: Life cycle assessment. Bioresource Technology, 245, 162-170.

https://doi.org/10.1016/j.biortech.2017.08.113

7. Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D., & Show, P. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24.

https://doi.org/10.1016/j.fshw.2019.03.001

8. European Food Safety Authority. EFSA Guidance Document for predicting environmental concentrations of active substances of plant protection products and transformation products of these active substances in soil. EFSA J [Internet]. 2015 Apr [cited 2025 Nov 11];13(4).

https://data.europa.eu/doi/10.2903/j.efsa.2015.4093

9. Yoshikawa, K., Aikawa, S., Kojima, Y., Toya, Y., Furusawa, C., Kondo, A., & Shimizu, H. (2015). Construction of a genome-scale metabolic model of Arthrospira platensis NIES-39 and metabolic design for Cyanobacterial Bioproduction. PLOS ONE, 10(12), e0144430.

https://doi.org/10.1371/journal.pone.0144430

10. Fujisawa, T., Narikawa, R., Okamoto, S., Ehira, S., Yoshimura, H., Suzuki, I., Masuda, T., Mochimaru, M., Takaichi, S., Awai, K., Sekine, M., Horikawa, H., Yashiro, I., Omata, S., Takarada, H., Katano, Y., Kosugi, H., Tanikawa, S., Ohmori, K., … Ohmori, M. (2010). Genomic structure of an economically important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Research, 17(2), 85-103.

https://doi.org/10.1093/dnares/dsq004

11. Cheevadhanarak, S., Paithoonrangsarid, K., Prommeenate, P., Kaewngam, W., Musigkain, A., Tragoonrung, S., Tabata, S., Kaneko, T., Chaijaruwanich, J., Sangsrakru, D., Tangphatsornruang, S., Chanprasert, J., Tongsima, S., Kusonmano, K., Jeamton, W., Dulsawat, S., Klanchui, A., Vorapreeda, T., Chumchua, V., … Tanticharoen, M. (2012). Draft genome sequence of Arthrospira platensis C1 (PCC9438). Standards in Genomic Sciences, 6(1), 43-53.

https://doi.org/10.4056/sigs.2525955

12. Wang, C., Fu, C., & Liu, Y. (2007). Effects of using light-emitting diodes on the cultivation of spirulina platensis. Biochemical Engineering Journal, 37(1), 21-25.

https://doi.org/10.1016/j.bej.2007.03.004

13. Price, G. D., Badger, M. R., Woodger, F. J., & Long, B. M. (2007). Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): Functional components, ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany, 59(7), 1441-1461.

https://doi.org/10.1093/jxb/erm112

14. Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W., & Hugenholtz, P. (2017). On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science, 355(6332), 1436-1440.

https://doi.org/10.1126/science.aal3794

15. De Souza, M. F., Rodrigues, M. A., Bon, E. P., & Freitas, S. P. (2018). Interference of starch accumulation in microalgal cell growth measurement. Journal of Applied Phycology, 31(1), 249-254.

https://doi.org/10.1007/s10811-018-1566-3

16. Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy, 88(10), 3389-3401.

https://doi.org/10.1016/j.apenergy.2010.12.042

17. Markou, G., Wang, L., Ye, J., & Unc, A. (2018). Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnology Advances, 36(4), 1238-1254.

https://doi.org/10.1016/j.biotechadv.2018.04.003

18. Tokuşoglu, Ö., & ÜUnal, M. (2003). Biomass nutrient profiles of three Microalgae: Spirulina platensis, chlorella vulgaris , and Isochrisis galbana. Journal of Food Science, 68(4), 1144-1148.

https://doi.org/10.1111/j.1365-2621.2003.tb09615.x

19. Marles, R. J. (2017). Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. Journal of Food Composition and Analysis, 56, 93-103.

https://doi.org/10.1016/j.jfca.2016.11.012

20. Romay, C., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: A Biliprotein with antioxidant, anti-inflammatory and Neuroprotective effects. Current Protein & Peptide Science, 4(3), 207-216.

https://doi.org/10.2174/1389203033487216

21. WATANABE, F., TAKENAKA, S., KITTAKA-KATSURA, H., EBARA, S., & MIYAMOTO, E. (2002). Characterization and bioavailability of vitamin B12-compounds from edible algae. Journal of Nutritional Science and Vitaminology, 48(5), 325-331.

https://doi.org/10.3177/jnsv.48.325

22. Johnson, P. E., & Shubert, L. E. (1986). Availability of iron to rats from spirulina, a blue-green alga. Nutrition Research, 6(1), 85-94.

https://doi.org/10.1016/s0271-5317(86)80202-0

23. Hirahashi, T., Matsumoto, M., Hazeki, K., Saeki, Y., Ui, M., & Seya, T. (2002). Activation of the human innate immune system by spirulina: Augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of spirulina platensis. International Immunopharmacology, 2(4), 423-434.

https://doi.org/10.1016/s1567-5769(01)00166-7

24. Parada, J. (1998). Lactic acid bacteria growth promoters from spirulina platensis. International Journal of Food Microbiology, 45(3), 225-228.

https://doi.org/10.1016/s0168-1605(98)00151-2

25. Ledda, C., Idà, A., Allemand, D., Mariani, P., & Adani, F. (2015). Production of wild chlorella Sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Research, 12, 68-73.

https://doi.org/10.1016/j.algal.2015.08.010

26. Béchet, Q., Shilton, A., & Guieysse, B. (2013). Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnology Advances, 31(8), 1648-1663.

https://doi.org/10.1016/j.biotechadv.2013.08.014

27. Posten, C. (2009). Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165-177.

https://doi.org/10.1002/elsc.200900003

28. Slegers, P., Lösing, M., Wijffels, R., Van Straten, G., & Van Boxtel, A. (2013). Scenario evaluation of open pond microalgae production. Algal Research, 2(4), 358-368.

https://doi.org/10.1016/j.algal.2013.05.001

29. Taelman, S. E., De Meester, S., Van Dijk, W., Da Silva, V., & Dewulf, J. (2015). Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import. Resources, Conservation and Recycling, 101, 61-72.

https://doi.org/10.1016/j.resconrec.2015.05.013

30. Kumar, K., Banerjee, D., & Das, D. (2014). Carbon dioxide sequestration from industrial flue gas by chlorella sorokiniana. Bioresource Technology, 152, 225-233.

https://doi.org/10.1016/j.biortech.2013.10.098

31. Xu, S., Zhu, J., Meng, Z., Li, W., Ren, S., & Wang, T. (2019). Hydrogen and methane production by Co-digesting liquid swine manure and brewery wastewater in a two-phase system. Bioresource Technology, 293, 122041.

https://doi.org/10.1016/j.biortech.2019.122041

32. Norsker, N., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production — A close look at the economics. Biotechnology Advances, 29(1), 24-27.

https://doi.org/10.1016/j.biotechadv.2010.08.005

33. Farfan-Cabrera, L. I., Franco-Morgado, M., González-Sánchez, A., Pérez-González, J., & Marín-Santibáñez, B. M. (2022). Microalgae biomass as a new potential source of sustainable green lubricants. Molecules, 27(4), 1205.

https://doi.org/10.3390/molecules27041205

34. Santos, A., Janssen, M., Lamers, P., Evers, W., & Wijffels, R. (2012). Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions. Bioresource Technology, 104, 593-599.

https://doi.org/10.1016/j.biortech.2011.10.084

35. Sim, S., Baik, K. S., Park, S. C., Choe, H. N., Seong, C. N., Shin, T., Woo, H. C., Cho, J., & Kim, D. (2012). Characterization of alginate lyase gene using a metagenomic library constructed from the gut microflora of abalone. Journal of Industrial Microbiology and Biotechnology, 39(4), 585-593.

https://doi.org/10.1007/s10295-011-1054-0

36. Eroglu, E., Eggers, P. K., Winslade, M., Smith, S. M., & Raston, C. L. (2013). Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chemistry, 15(11), 3155.

https://doi.org/10.1039/c3gc41291a

37. Xu, S., Zhu, J., Meng, Z., Li, W., Ren, S., & Wang, T. (2019). Hydrogen and methane production by Co-digesting liquid swine manure and brewery wastewater in a two-phase system. Bioresource Technology, 293, 122041.

https://doi.org/10.1016/j.biortech.2019.122041

38. Lucas, B. F., Morais, M. G., Santos, T. D., & Costa, J. A. (2018). Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT, 90, 270-276.

https://doi.org/10.1016/j.lwt.2017.12.032

39. Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi, M. A., Fendri, I., Attia, H., & Abdelkafi, S. (2017). Effect of spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT, 84, 323-330.

https://doi.org/10.1016/j.lwt.2017.05.071

40. Soni, R. A., Sudhakar, K., & Rana, R. (2019). Comparative study on the growth performance of spirulina platensis on modifying culture media. Energy Reports, 5, 327-336.

https://doi.org/10.1016/j.egyr.2019.02.009

41. Yandle, B. (1978). Identifying brand performance by shift-share analysis. Journal of the Academy of Marketing Science, 6(1-2), 126-137.

https://doi.org/10.1007/bf02721828

42. Abdulqader, G., Barsanti, L., & Tredici, M. R. (2000). Harvest of Arthrospira platensis from lake Kossorom (Chad) and its household usage among the Kanembu. Journal of Applied Phycology, 12(3-5), 493-498.

https://doi.org/10.1023/a:1008177925799

43. Becker EW. Microalgae for Human and Animal Nutrition. In: Richmond A, Hu Q, editors. Handbook of Microalgal Culture [Internet]. 1st ed. Wiley; 2013 [cited 2025 Nov 11]. p. 461–503. Available from:

https://onlinelibrary.wiley.com/doi/10.1002/9781118567166.ch25

44. Smetana, S., Sandmann, M., Rohn, S., Pleissner, D., & Heinz, V. (2017). Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: Life cycle assessment. Bioresource Technology, 245, 162-170. https://doi.org/10.1016/j.biortech.2017.08.113.

45. Dale, A. (2007). At the edge.

https://doi.org/10.59962/9780774850025

46. Almela, C., Algora, S., Benito, V., Clemente, M. J., Devesa, V., Súñer, M. A., Vélez, D., & Montoro, R. (2002). Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. Journal of Agricultural and Food Chemistry, 50(4), 918-923.

https://doi.org/10.1021/jf0110250

47. European Food Safety Authority. EFSA Guidance Document for predicting environmental concentrations of active substances of plant protection products and transformation products of these active substances in soil. EFSA J [Internet]. 2015 Apr [cited 2025 Nov 11];13(4). Available from:

https://data.europa.eu/doi/10.2903/j.efsa.2015.4093

48. De A, De S, Saha N, Das B, Naskar S, Samanta A. Pharmacopoeias, national formulary and extra pharmacopoeia. In: Dosage Forms, Formulation Developments and Regulations [Internet]. Elsevier; 2024 [cited 2025 Nov 11]. p. 83–98. Available from:

https://linkinghub.elsevier.com/retrieve/pii/B9780323918176000115

49. Grunert, K. G., Hieke, S., & Wills, J. (2014). Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy, 44, 177-189.

https://doi.org/10.1016/j.foodpol.2013.12.001

50. Norsker, N., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production — A close look at the economics. Biotechnology Advances, 29(1), 24-27.

https://doi.org/10.1016/j.biotechadv.2010.08.005

51. Caporgno, M. P., & Mathys, A. (2018). Trends in Microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5.

https://doi.org/10.3389/fnut.2018.00058

52. The State of World Fisheries and Aquaculture 2020 [Internet]. FAO; 2020 [cited 2025 Nov 11]. Available from:

http://www.fao.org/documents/card/en/c/ca9229en

53. Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D., & Show, P. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24.

https://doi.org/10.1016/j.fshw.2019.03.001

Downloads

Published

2025-10-30

How to Cite

Noor Ul Ain, Amjad, H. B., Chohan, S. U. D., Abdul Razaq, Iftikhar, M., Batool, H., Khalid, A., & Tauqir, A. (2025). Spirulina Algae: A Sustainable Solution for Enhancing Global Protein Nutrition. Indus Journal of Bioscience Research, 3(10), 359-368. https://doi.org/10.70749/ijbr.v3i10.2569