Impact of Climate Change on Glacier Melting and Water Security in the Karakoram and Himalayan Region of Pakistan

Authors

  • Rahat Hameed Environment Officer in China Civil Engineering Cooperation Dasu Dam Project, Pakistan.
  • Roshan Jee Department of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
  • Huba Bint E Aslam Institute of Environmental Engineering & Research, University of Engineering and Technology (UET) Lahore, Punjab, Pakistan.
  • Noor Fatima Institute of Environmental Engineering & Research, University of Engineering and Technology (UET) Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i11.2595

Keywords:

Karakoram Anomaly, Glacier Mass Balance, Indus River, Water Security, Climate Change, GLOFs, Remote Sensing, Climate Policy.

Abstract

The Karakoram and Himalayan area of Pakistan is a vital part of the Earth's cryosphere; it is the principal reservoir of freshwater for millions of people living downstream. This broad review highlights the complex climate-glacier-water nexus of this vulnerable area, and its critical role in Pakistan's water security. The world has observed extensive mass loss of glaciers due to global warming, but the region is heterogeneous across space with strong evidence of stability, referred to as the Karakoram Anomaly; glaciers maintain stability or even gain mass while regional warming progresses. Recent research shows that, despite the anomalous behavior, warming trends are linked with increased temperatures, altered precipitation patterns, and increased deposition of light-absorbing particles, leading to increased melt rates of glaciers in most areas, particularly in the Himalayan ranges. These modifications are more relevant to the Indus River System, as more than 50% of its annual flow comes from melted snow or glaciers. The water insecurity due to reduced flows represents a significant threat to agriculture, hydropower, and social-economic stability for millions living in Pakistan and South Asia. This analysis calls for urgent integrated research approaches and policy frameworks, along with enhanced cooperation across borders, to build climate resilience for all parts of the region.

Downloads

Download data is not yet available.

References

1. Intergovernmental Panel On Climate Change (Ipcc). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change [Internet]. 1st ed. Cambridge University Press; 2022 [cited 2025 Nov 3].

https://www.cambridge.org/core/product/identifier/9781009157964/type/book

2. Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D., Kulkarni, A. V., Mayewski, P. A., … Baillie, J. E. (2019). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364-369.

https://doi.org/10.1038/s41586-019-1822-y

3. Wester P, Mishra A, Mukherji A, Shrestha AB, (2019). editors. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People [Internet]. Cham: Springer International Publishing.

http://link.springer.com/10.1007/978-3-319-92288-1

4. Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B., & Bierkens, M. F. (2016). Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes. PLOS ONE, 11(11), e0165630.

https://doi.org/10.1371/journal.pone.0165630

5. Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., & Cogley, J. G. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382-386.

https://doi.org/10.1038/s41586-019-1071-0

6. Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel, W. W., Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., & Zhang, Y. (2019). Status and change of the Cryosphere in the extended Hindu Kush Himalaya region. The Hindu Kush Himalaya Assessment, 209-255.

https://doi.org/10.1007/978-3-319-92288-1_7

7. Farinotti, D., Immerzeel, W. W., De Kok, R. J., Quincey, D. J., & Dehecq, A. (2020). Manifestations and mechanisms of the Karakoram glacier anomaly.

https://doi.org/10.5194/egusphere-egu2020-11382

8. Liang, Y., & Fedorov, A. V. (2021). Linking the Madden–Julian oscillation, tropical cyclones and westerly wind bursts as part of El Nino development. Climate Dynamics, 57(3-4), 1039-1060.

https://doi.org/10.1007/s00382-021-05757-1

9. Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow, P. W., Berthier, E., Vincent, C., Wagnon, P., & Trouvé, E. (2018). Twenty-first century glacier slowdown driven by mass loss in high mountain Asia. Nature Geoscience, 12(1), 22-27.

https://doi.org/10.1038/s41561-018-0271-9

10. Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, M. A., Vellore, R., Xu, Y., You, Q., & Ren, Y. (2019). Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. The Hindu Kush Himalaya Assessment, 57-97.

https://doi.org/10.1007/978-3-319-92288-1_3

11. Huss, M., & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2), 135-140.

https://doi.org/10.1038/s41558-017-0049-x

12. Immerzeel, W. W., Van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382-1385.

https://doi.org/10.1126/science.1183188

13. Panagos, P., Ballabio, C., Himics, M., Scarpa, S., Matthews, F., Bogonos, M., Poesen, J., & Borrelli, P. (2021). Projections of soil loss by water erosion in Europe by 2050. Environmental Science & Policy, 124, 380-392.

https://doi.org/10.1016/j.envsci.2021.07.012

14. Mölg, N., Bolch, T., Rastner, P., Strozzi, T., & Paul, F. (2018). A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: Distribution of debris cover and mapping challenges. Earth System Science Data, 10(4), 1807-1827.

https://doi.org/10.5194/essd-10-1807-2018

15. Ullah, S., You, Q., Ullah, W., & Ali, A. (2018). Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmospheric Research, 210, 1-14.

https://doi.org/10.1016/j.atmosres.2018.04.007

16. Farinotti, D., Immerzeel, W. W., De Kok, R. J., Quincey, D. J., & Dehecq, A. (2020). Manifestations and mechanisms of the Karakoram glacier anomaly. Nature Geoscience, 13(1), 8-16.

https://doi.org/10.1038/s41561-019-0513-5

17. Cortellari, M., Barbato, M., Talenti, A., Bionda, A., Carta, A., Ciampolini, R., Ciani, E., Crisà, A., Frattini, S., Lasagna, E., Marletta, D., Mastrangelo, S., Negro, A., Randi, E., Sarti, F. M., Sartore, S., Soglia, D., Liotta, L., Stella, A., … Crepaldi, P. (2021). The climatic and genetic heritage of Italian goat breeds with genomic SNP data. Scientific Reports, 11(1).

https://doi.org/10.1038/s41598-021-89900-2

18. Liang, Y., & Fedorov, A. V. (2021). Linking the Madden–Julian oscillation, tropical cyclones and westerly wind bursts as part of El Nino development. Climate Dynamics, 57(3-4), 1039-1060.

https://doi.org/10.1007/s00382-021-05757-1

19. Singh, S., Kumar, R., Singh, A., & Singh, J. (2024). Indian himalayan glaciers’ health under changing climate. Sustainable Development Goals Series, 49-63.

https://doi.org/10.1007/978-3-031-55821-4_4

20. Sun, W., Wang, B., Liu, J., & Dai, Y. (2022). Recent changes of Pacific decadal variability shaped by greenhouse forcing and internal variability. Journal of Geophysical Research: Atmospheres, 127(8).

https://doi.org/10.1029/2021jd035812

21. Ombadi, M., Risser, M. D., Rhoades, A. M., & Varadharajan, C. (2023). A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature, 619(7969), 305-310.

https://doi.org/10.1038/s41586-023-06092-7

22. Kraaijenbrink, P. D., Bierkens, M. F., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global temperature rise of 1.5 degrees celsius on Asia’s glaciers. Nature, 549(7671), 257-260.

https://doi.org/10.1038/nature23878

23. Gertler, C. G., Puppala, S. P., Panday, A., Stumm, D., & Shea, J. (2016). Black carbon and the himalayan cryosphere: A review. Atmospheric Environment, 125, 404-417.

https://doi.org/10.1016/j.atmosenv.2015.08.078

24. Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227.

https://doi.org/10.1038/ngeo156

25. Murakami, T., Takeuchi, N., Mori, H., Hirose, Y., Edwards, A., Irvine-Fynn, T., Li, Z., Ishii, S., & Segawa, T. (2022). Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. Microbiome, 10(1).

https://doi.org/10.1186/s40168-022-01238-7

26. Mölg, T., Maussion, F., & Scherer, D. (2013). Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia. Nature Climate Change, 4(1), 68-73.

https://doi.org/10.1038/nclimate2055

27. McGregor, H. V., Evans, M. N., Goosse, H., Leduc, G., Martrat, B., Addison, J. A., Mortyn, P. G., Oppo, D. W., Seidenkrantz, M., Sicre, M., Phipps, S. J., Selvaraj, K., Thirumalai, K., Filipsson, H. L., & Ersek, V. (2015). Robust global ocean cooling trend for the pre-industrial Common Era. Nature Geoscience, 8(9), 671-677.

https://doi.org/10.1038/ngeo2510

28. Jouvet, G., & Huss, M. (2019). Future retreat of great Aletsch glacier. Journal of Glaciology, 65(253), 869-872.

https://doi.org/10.1017/jog.2019.52

29. Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B., & Bierkens, M. F. (2016). Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes. PLOS ONE, 11(11), e0165630.

https://doi.org/10.1371/journal.pone.0165630

30. Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D., Kulkarni, A. V., Mayewski, P. A., … Baillie, J. E. (2019). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364-369.

https://doi.org/10.1038/s41586-019-1822-y

31. Huss, M., & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2), 135-140.

https://doi.org/10.1038/s41558-017-0049-x

32. Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. (2014). Consistent increase in high Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7), 587-592.

https://doi.org/10.1038/nclimate2237

33. Fung, K. F., Huang, Y. F., Koo, C. H., & Soh, Y. W. (2019). Drought forecasting: A review of modelling approaches 2007–2017. Journal of Water and Climate Change, 11(3), 771-799.

https://doi.org/10.2166/wcc.2019.236

34. Leung, B. C. (2018). Greening existing buildings [GEB] strategies. Energy Reports, 4, 159-206.

https://doi.org/10.1016/j.egyr.2018.01.003

35. Kundzewicz, Z. W., Pińskwar, I., & Koutsoyiannis, D. (2020). Variability of global mean annual temperature is significantly influenced by the rhythm of ocean-atmosphere oscillations. Science of The Total Environment, 747, 141256.

https://doi.org/10.1016/j.scitotenv.2020.141256

36. Chambers, L., Lui, S., Plotz, R., Hiriasia, D., Malsale, P., Pulehetoa-Mitiepo, R., Natapei, M., Sanau, N., Waiwai, M., Tahani, L., Willy, A., Finaulahi, S., Loloa, F., & Fa’anunu, ‘. (2019). Traditional or contemporary weather and climate forecasts: Reaching Pacific communities. Regional Environmental Change, 19(5), 1521-1528.

https://doi.org/10.1007/s10113-019-01487-7

37. Zeng, J., Wei, J., Zhao, D., Zhu, W., & Gu, J. (2017). Information-seeking intentions of residents regarding the risks of nuclear power plant: An empirical study in China. Natural Hazards, 87(2), 739-755.

https://doi.org/10.1007/s11069-017-2790-x

38. Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 10(10), 939-945.

https://doi.org/10.1038/s41558-020-0855-4

39. Bhardwaj, A., Sam, L., Akanksha, Martín-Torres, F. J., & Kumar, R. (2016). UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sensing of Environment, 175, 196-204.

https://doi.org/10.1016/j.rse.2015.12.029

40. Ren, W., Zhu, Z., Wang, Y., Su, J., Zeng, R., Zheng, D., & Li, X. (2024). Comparison of machine learning models in simulating glacier mass balance: Insights from maritime and continental glaciers in high mountain Asia. Remote Sensing, 16(6), 956.

https://doi.org/10.3390/rs16060956

41. Liu, H., Wang, Z., Wen, H., Pei, N., Xia, Z., Bian, R., Ma, S., & Tao, L. (2025). Predicting glacial lake outburst susceptibility on the southern Tibetan Plateau with historical events and machine learning methods. Natural Hazards, 121(15), 17677-17705.

https://doi.org/10.1007/s11069-025-07486-8

42. Matthews, T., Perry, L. B., Koch, I., Aryal, D., Khadka, A., Shrestha, D., Abernathy, K., Elmore, A. C., Seimon, A., Tait, A., Elvin, S., Tuladhar, S., Baidya, S. K., Potocki, M., Birkel, S. D., Kang, S., Sherpa, T. C., Gajurel, A., & Mayewski, P. A. (2020). Going to extremes: Installing the world’s highest weather stations on Mount Everest. Bulletin of the American Meteorological Society, 101(11), E1870-E1890.

https://doi.org/10.1175/bams-d-19-0198.1

43. Burt, T. P., Jones, P. D., & Howden, N. J. (2014). An analysis of rainfall across the British Isles in the 1870s. International Journal of Climatology, 35(10), 2934-2947.

https://doi.org/10.1002/joc.4184

44. Grosinger, J., Grigulis, K., Elleaume, N., Buclet, N., & Lavorel, S. (2022). Community-based institutions shape cheese Co-production in a French Alpine Valley. Mountain Research and Development, 42(3).

https://doi.org/10.1659/mrd-journal-d-21-00035.1

45. Palazzi, E., Von Hardenberg, J., & Provenzale, A. (2013). Precipitation in the Hindu‐Kush Karakoram Himalaya: Observations and future scenarios. Journal of Geophysical Research: Atmospheres, 118(1), 85-100.

https://doi.org/10.1029/2012jd018697

46. Toure, A. M., Rodell, M., Yang, Z., Beaudoing, H., Kim, E., Zhang, Y., & Kwon, Y. (2015). Evaluation of the snow simulations from the community land model, version 4 (CLM4). Journal of Hydrometeorology, 17(1), 153-170.

https://doi.org/10.1175/jhm-d-14-0165.1

47. Rounce, D. R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B., & McNabb, R. W. (2023). Global glacier change in the 21st century: Every increase in temperature matters. Science, 379(6627), 78-83.

https://doi.org/10.1126/science.abo1324

48. Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., Huss, M., Immerzeel, W., Kraaijenbrink, P., Malles, J., Maussion, F., Radic, V., Rounce, D., Sakai, A., Shannon, S., Van de Wal, R., & Zekollari, H. (2020). Partitioning the uncertainty of ensemble projections of global glacier mass change.

https://doi.org/10.5194/egusphere-egu2020-5579

49. Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., & Bierkens, M. F. (2014). Consistent increase in high Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7), 587-592.

https://doi.org/10.1038/nclimate2237

50. Huss, M., & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2), 135-140.

https://doi.org/10.1038/s41558-017-0049-x

51. Zhang, G., Gao, M., Xing, S., Kong, R., Dai, M., Li, P., Wang, D., & Xu, Q. (2025). Automated detection and mapping of Supraglacial lakes using machine learning from ICESat-2 and Sentinel-2 data. IEEE Transactions on Geoscience and Remote Sensing, 63, 1-23.

https://doi.org/10.1109/tgrs.2025.3602429

52. Jaafar, H., Mourad, R., & Schull, M. (2022). A global 30-m ET model (HSEB) using harmonized Landsat and Sentinel-2, MODIS and VIIRS: Comparison to ECOSTRESS ET and LST. Remote Sensing of Environment, 274, 112995.

https://doi.org/10.1016/j.rse.2022.112995

53. Panagos, P., Ballabio, C., Himics, M., Scarpa, S., Matthews, F., Bogonos, M., Poesen, J., & Borrelli, P. (2021). Projections of soil loss by water erosion in Europe by 2050. Environmental Science & Policy, 124, 380-392.

https://doi.org/10.1016/j.envsci.2021.07.012

54. Zeng, J., Wei, J., Zhao, D., Zhu, W., & Gu, J. (2017). Information-seeking intentions of residents regarding the risks of nuclear power plant: An empirical study in China. Natural Hazards, 87(2), 739-755.

https://doi.org/10.1007/s11069-017-2790-x

55. Ahmed, M., Raza, M. Y., Malik, N. A., & Malik, A. (2025). Climate-resilient agriculture (CRA): Pathway to sustainable development. Advances in Global Change Research, 185-212.

https://doi.org/10.1007/978-3-032-00190-0_9

56. Verhoeven, H. (2014). Gardens of Eden or hearts of darkness? The genealogy of discourses on environmental insecurity and climate wars in Africa. Geopolitics, 19(4), 784-805.

https://doi.org/10.1080/14650045.2014.896794

57. Matthews, T., Perry, L. B., Koch, I., Aryal, D., Khadka, A., Shrestha, D., Abernathy, K., Elmore, A. C., Seimon, A., Tait, A., Elvin, S., Tuladhar, S., Baidya, S. K., Potocki, M., Birkel, S. D., Kang, S., Sherpa, T. C., Gajurel, A., & Mayewski, P. A. (2020). Going to extremes: Installing the world’s highest weather stations on Mount Everest. Bulletin of the American Meteorological Society, 101(11), E1870-E1890.

https://doi.org/10.1175/bams-d-19-0198.1

58. Eqan, M., & Wan, J. (2024). Climate governance in South Asia. Sustainable Finance, 185-214.

https://doi.org/10.1007/978-3-031-56423-9_7

Downloads

Published

2025-11-25

How to Cite

Hameed, R., Jee, R., Bint E Aslam, H., & Fatima, N. (2025). Impact of Climate Change on Glacier Melting and Water Security in the Karakoram and Himalayan Region of Pakistan. Indus Journal of Bioscience Research, 3(11), 26-33. https://doi.org/10.70749/ijbr.v3i11.2595