Discovery of Potential Plant-Based Anti-HCV Agents: Anti-Replicative Activity of Solanum surattense and Its Bioactive Flavonoids Against HCV-3a
DOI:
https://doi.org/10.70749/ijbr.v3i3.2602Keywords:
Hepatitis C Virus, Solanum Surattense, Flavonoids, NS3 Protease, Antiviral ActivityAbstract
Hepatitis C virus (HCV) infection remains a global health burden, with genotype 3a (HCV-3a) being highly prevalent in South Asia and associated with accelerated disease progression and reduced response to certain direct-acting antivirals (DAAs). Resistance-associated substitutions (RASs) continue to limit therapeutic efficacy, emphasizing the need for novel, cost-effective antiviral agents. In this study, we evaluated the anti-HCV potential of Solanum surattense leaves and flowers against HCV-3a replication in Huh-7 hepatoma cells. Methanolic extracts were prepared, and cytotoxicity was assessed via MTT assay, revealing cell viability >90% up to 105 µg/mL for both extracts. Huh-7 cells were transfected with full-length HCV-3a and NS3-expressing plasmids and treated with extracts at 52.5 and 105 µg/mL. Antiviral activity was quantified using qRT-PCR and NS3 protein expression analysis. Leaf extract demonstrated robust, dose-dependent inhibition of HCV-3a replication, achieving 65.1% and 88.2% inhibition at 52.5 µg/mL and 105 µg/mL, respectively, while flower extract exhibited moderate inhibition (42.7% and 57.9%). NS3 expression was similarly suppressed by leaf extract (61.4–85.7%). Notably, the antiviral efficacy of leaf extract at higher concentrations was comparable to daclatasvir (73.5% inhibition). These findings suggest that S. surattense leaves harbor bioactive flavonoids and related phytochemicals capable of targeting multiple stages of HCV replication without significant cytotoxicity.
Downloads
References
1. Alberts, C. J., Clifford, G. M., Georges, D., Negro, F., Lesi, O. A., Hutin, Y. J., & de Martel, C. (2022). Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: a systematic review. The Lancet Gastroenterology & Hepatology, 7(8), 724–735. DOI: 10.1016/S2468-1253(22)00050-4
2. Sallam, M., & Khalil, R. (2024). Contemporary insights into hepatitis C virus: a comprehensive review. Microorganisms, 12(6), 1035. DOI: 10.3390/microorganisms12061035
3. Veracruz, N., Gish, R. G., Cheung, R., Chitnis, A. S., & Wong, R. J. (2022). Global incidence and mortality of hepatitis B and hepatitis C acute infections, cirrhosis and hepatocellular carcinoma from 2010 to 2019. Journal of Viral Hepatitis, 29(5), 352–365. DOI: 10.1111/jvh.13663
4. Pham, Y. T. H., Huang, D. Q., Zhang, Z., Ng, C. H., Tan, D. J. H., Nguyen, H. C., ... & Luu, H. N. (2024). Changing global epidemiology of chronic hepatitis C virus-related outcomes from 2010 to 2019: cirrhosis is the growing burden of hepatitis C virus-related disease. European Journal of Cancer Prevention, 33(6), 512–524. DOI: 10.1097/CEJ.0000000000000885
5. Izhari, M. A. (2023). Molecular mechanisms of resistance to direct-acting antiviral (DAA) drugs for the treatment of hepatitis C virus infections. Diagnostics, 13(19), 3102. DOI: 10.3390/diagnostics13193102
6. Popping, S., Cento, V., Seguin-Devaux, C., Boucher, C. A., de Salazar, A., Heger, E., ... & Ceccherini-Silberstein, F. (2021). The European prevalence of resistance associated substitutions among direct acting antiviral failures. Viruses, 14(1), 16. DOI: 10.3390/v14010016
7. Dietz, J., Müllhaupt, B., Buggisch, P., Graf, C., Peiffer, K. H., Matschenz, K., ... & Adler, M. (2023). Long-term persistence of HCV resistance-associated substitutions after DAA treatment failure. Journal of Hepatology, 78(1), 57–66. DOI: 10.1016/j.jhep.2022.08.039
8. Khalil, R., Al-Mahzoum, K., Barakat, M., & Sallam, M. (2024). An Increase in the Prevalence of Clinically Relevant Resistance-Associated Substitutions in Four Direct-Acting Antiviral Regimens: A Study Using GenBank HCV Sequences. Pathogens, 13(8), 674. DOI: 10.3390/pathogens13080674
9. Said, Z. N. A., & El-Sayed, M. H. (2022). Challenge of managing hepatitis B virus and hepatitis C virus infections in resource-limited settings. World Journal of Hepatology, 14(7), 1333. DOI: 10.4254/wjh.v14.i7.1333
10. Toma, D., Anghel, L., Patraș, D., & Ciubară, A. (2025). Hepatitis C Virus: Epidemiological Challenges and Global Strategies for Elimination. Viruses, 17(8), 1069.
11. Tabll, A. A., Sohrab, S. S., Ali, A. A., Petrovic, A., Steiner Srdarevic, S., Siber, S., ... & Smolic, M. (2023). Future prospects, approaches, and the government’s role in the development of a hepatitis C virus vaccine. Pathogens, 13(1), 38. DOI: 10.3390/pathogens13010038
12. Thomas, E., Stewart, L. E., Darley, B. A., Pham, A. M., Esteban, I., & Panda, S. S. (2021). Plant-based natural products and extracts: Potential source to develop new antiviral drug candidates. Molecules, 26(20), 6197. DOI: 10.3390/molecules26206197
13. Venkataraman, S. (2022). Plant molecular pharming and plant-derived compounds towards generation of vaccines and therapeutics against coronaviruses. Vaccines, 10(11), 1805. DOI: 10.3390/vaccines10111805
14. Dhamija, N., & Mangla, A. (2022). Plant secondary metabolites in antiviral applications. In Plant Secondary Metabolites: Physico-Chemical Properties and Therapeutic Applications (pp. 459–482).
15. Adeosun, W. B., & Loots, D. T. (2024). Medicinal plants against viral infections: a review of metabolomics evidence for the antiviral properties and potentials in plant sources. Viruses, 16(2), 218. DOI: 10.3390/v16020218
16. Saifulazmi, N. F., Rohani, E. R., Harun, S., Bunawan, H., Hamezah, H. S., Nor Muhammad, N. A., ... & Sarian, M. N. (2022). A review with updated perspectives on the antiviral potentials of traditional medicinal plants and their prospects in antiviral therapy. Life, 12(8), 1287. DOI: 10.3390/life12081287
17. Alhazmi, H. A., Najmi, A., Javed, S. A., Sultana, S., Al Bratty, M., Makeen, H. A., ... & Khalid, A. (2021). Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Frontiers in Immunology, 12, 637553. DOI: 10.3389/fimmu.2021.637553
18. Hasan, K., Sabiha, S., Islam, N., Pinto, J. F., & Silva, O. (2024). Ethnomedicinal Usage, Phytochemistry and Pharmacological Potential of Solanum surattense Burm. f. Pharmaceuticals, 17(7), 948. DOI: 10.3390/ph17070948
19. Chuaypen, N., Khlaiphuengsin, A., Prasoppokakorn, T., Susantitaphong, P., Prasithsirikul, W., Avihingsanon, A., ... & Praditpornsilpa, K. (2022). Prevalence and genotype distribution of hepatitis C virus within hemodialysis units in Thailand: role of HCV core antigen in the assessment of viremia. BMC Infectious Diseases, 22(1), 79. DOI: 10.1186/s12879-022-07050-0
20. Mandal, A., & Hazra, B. (2023). Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytotherapy Research, 37(10), 4353–4374.
21. Gabbianelli, R., Shahar, E., De Simone, G., Rucci, C., Bordoni, L., Feliziani, G., ... & Mahajna, J. (2023). Plant-derived epi-nutraceuticals as potential broad-spectrum anti-viral agents. Nutrients, 15(22), 4719. DOI: 10.3390/nu15224719
22. Bachar, S. C., Mazumder, K., Bachar, R., Aktar, A., & Al Mahtab, M. (2021). A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Frontiers in Pharmacology, 12, 732891. DOI: 10.3389/fphar.2021.732891
23. Denaro, M., Smeriglio, A., Barreca, D., De Francesco, C., Occhiuto, C., Milano, G., & Trombetta, D. (2020). Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research, 34(4), 742–768. DOI: 10.1002/ptr.6573
24. Behl, T., Rocchetti, G., Chadha, S., Zengin, G., Bungau, S., Kumar, A., ... & Montesano, D. (2021). Phytochemicals from plant foods as potential source of antiviral agents: an overview. Pharmaceuticals, 14(4), 381. DOI: 10.3390/ph14040381
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
