Inhibition of Enzymatic Browning and Oxidation in Pineapple Fruit by Different Thermal and Non-Thermal Techniques

Authors

  • Rana Fahad Ahmed National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Pakistan
  • Safoora Murad Department of Chemistry, University of Agriculture Faisalabad, Pakistan
  • Laiba Shafiq National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Pakistan
  • Shahrooz Basharat National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Pakistan
  • Khurram Saeed Department of Human Nutrition and Dietetics, Kohat University of Science and Technology, Kohat, Pakistan
  • Rabia Abid Department of Food Engineering, University of Agriculture Faisalabad, Pakistan
  • Zareena Ashfaq Department of Food Engineering, University of Agriculture Faisalabad, Pakistan
  • Waqar ul Hassan Department of Human Nutrition and Dietetics, Kohat University of Science and Technology, Kohat, Pakistan
  • Alishba Mazhar Department of Human Nutrition and Dietetics, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan

DOI:

https://doi.org/10.70749/ijbr.v3i9.2645

Keywords:

Pineapple, Enzymatic browning, Polyphenol oxidase (PPO), Peroxidase (POD), Thermal and non-thermal treatments, High-pressure processing

Abstract

Pineapple (Ananas comosus L.) is a renowned tropical and subtropical fruit growing all around the world, having large nutritional and commercial values. Pineapple is greatly consumed in both ways, fresh and processed as dried pineapple, jam, jelly, juice, and dehydrated sweets. Pineapple has huge demand in food industry as it is rich in minerals, vitamins, antioxidants, and micronutrients, possessing many health benefits, such as improving digestion, lowering cholesterol, decreasing inflammation, ageing, and fighting cancer. A frequent issue that drastically influence the quality parameters of number of fruits and vegetables, is enzymatic browning. Enzymatic browning is the generation of dark pigment in fruit that doesn’t only change the color but also changes the texture and lowers the nutritional values and flavor of the product. To avoid the fall in quality standards of pineapple, proper inhibition of enzymatic browning is a need of hour. Based on the recent research, this review summarizes the thermal and non-thermal techniques in prevention of browning. The treatments effectively target the enzymes that catalysis the oxidation of phenolic like polyphenol oxidase (PPO) and pectin methylesterase (PME) that increase the availability of phenolics to PPO, ultimately causing the pigmentation (browning) in pineapple. The efficiency of treatments enhances by combining both thermal and non-thermal techniques, leading to greater suppression of enzymatic browning with hybrid treatments. Though, the gap between researchers, government officials, and industry stakeholders still needed to be addressed to cross the barriers about infrastructure, cost, and consumer acceptance.

Downloads

Download data is not yet available.

References

1. Aadil, R. M., Khalil, A. A., Rehman, A., Khalid, A., Inam‐ur‐Raheem, M., Karim, A., Gill, A. A., Abid, M., & Afraz, M. T. (2020). Assessing the impact of ultra‐sonication and thermo‐ultrasound on antioxidant indices and polyphenolic profile of apple‐grape juice blend. Journal of Food Processing and Preservation, 44(5), e14406.

https://doi.org/10.1111/jfpp.14406

2. Abraham, R. A., Joshi, J., & Abdullah, S. (2023). A comprehensive review of pineapple processing and its by-product valorization in India. Food Chemistry Advances, 3, 100416.

https://doi.org/10.1016/j.focha.2023.100416

3. Alothman, M., Bhat, R., & Karim, A. A. (2009). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 10(4), 512-516.

https://doi.org/10.1016/j.ifset.2009.03.004

4. Alothman, M., Kaur, B., Fazilah, A., Bhat, R., & Karim, A. A. (2010). Ozone-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 11(4), 666-671.

https://doi.org/10.1016/j.ifset.2010.08.008

5. Amoghin, M. L., Abbaspour-Gilandeh, Y., Tahmasebi, M., & Arribas, J. I. (2024). Automatic non-destructive estimation of polyphenol oxidase and peroxidase enzyme activity levels in three bell pepper varieties by Vis/NIR spectroscopy imaging data based on machine learning methods. Chemometrics and Intelligent Laboratory Systems, 250, 105137.

https://doi.org/10.1016/j.chemolab.2024.105137

6. Anjaly, M. G., Prince, M. V., Warrier, A. S., Lal, A. M. N., Mahanti, N. K., Pandiselvam, R., Thirumdas, R., Sreeja, R., Rusu, A. V., Trif, M., & Kothakota, A. (2022). Design consideration and modelling studies of ultrasound and ultraviolet combined approach for shelf-life enhancement of pine apple juice. Ultrason Sonochem, 90, 106166.

https://doi.org/10.1016/j.ultsonch.2022.106166

7. Aschoff, J. K., Riedl, K. M., Cooperstone, J. L., Högel, J., Bosy‐Westphal, A., Schwartz, S. J., ... & Schweiggert, R. M. (2016). Urinary excretion of citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross‐over study. Molecular nutrition & food research, 60(12), 2602-2610.

https://doi.org/10.1002/mnfr.201600315

8. Aslam, R., Alam, M. S., Ali, A., Tao, Y., & Manickam, S. (2023). A chemometric approach to evaluate the effects of probe-type ultrasonication on the enzyme inactivation and quality attributes of fresh amla juice. Ultrason Sonochem, 92, 106268.

https://doi.org/10.1016/j.ultsonch.2022.106268

9. AYÓN-REYNA, L. E., AYÓN-REYNA, L. G., LÓPEZ-LÓPEZ, M. E., LÓPEZ-ANGULO, G., PINEDA-HIDALGO, K. V., ZAZUETA-NIEBLA, J. A., & VEGA-GARCÍA, M. O. (2019). Changes in ascorbic acid and total phenolics contents associated with browning inhibition of pineapple slices. Food Science and Technology, 39, 531-537.

https://doi.org/10.1590/fst.21117

10. Bae, S. J., Kim, J. E., Choi, H. J., Choi, Y. J., Lee, S. J., Gong, J. E., ... & Hwang, D. Y. (2020). α-Linolenic acid-enriched cold-pressed perilla oil suppress high-fat diet-induced hepatic steatosis through amelioration of the ER stress-mediated autophagy. Molecules, 25(11), 2662.

https://doi.org/10.3390/molecules25112662

11. Cano-Lamadrid, M., & Artés-Hernández, F. (2022). Thermal and Non-Thermal Treatments to Preserve and Encourage Bioactive Compounds in Fruit- and Vegetable-Based Products. Foods, 11(21), 3400.

https://www.mdpi.com/2304-8158/11/21/3400

12. Cao, X., Cai, C., Wang, Y., & Zheng, X. (2018). The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innovative Food Science & Emerging Technologies, 45, 169-178.

https://doi.org/10.1016/j.ifset.2017.09.018

13. Cautela, D., Castaldo, D., & Laratta, B. (2018). Thermal inactivation of pectin methylesterase in pineapple juice. Journal of Food Measurement and Characterization, 12(4), 2795-2800.

https://doi.org/10.1007/s11694-018-9894-1

14. Cautela, D., Castaldo, D., & Laratta, B. (2018). Thermal inactivation of pectin methylesterase in pineapple juice. Journal of Food Measurement and Characterization, 12, 2795-2800.

https://doi.org/10.1007/s11694-018-9894-1

15. Chacha, J. S., Zhang, L., Ofoedu, C. E., Suleiman, R. A., Dotto, J. M., Roobab, U., ... & Guiné, R. P. (2021). Revisiting non-thermal food processing and preservation methods—Action mechanisms, pros and cons: A technological update (2016–2021). Foods, 10(6), 1430.

https://doi.org/10.3390/foods10061430

16. Chacha, J. S., Zhang, L., Ofoedu, C. E., Suleiman, R. A., Dotto, J. M., Roobab, U., Agunbiade, A. O., Duguma, H. T., Mkojera, B. T., Hossaini, S. M., Rasaq, W. A., Shorstkii, I., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. P. F. (2021). Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021). Foods, 10(6), 1430.

https://www.mdpi.com/2304-8158/10/6/1430

17. Chadar¨¦, F. J., Hounhouigan, M. n. H., Sanya, A. K. C., Gbaguidi, M. c. A., Dekpemadoha, J., Linnemann, A. R., & Hounhouigan, D. J. (2021). Microbial and Nutritional Stability of Pineapple Juice during Storage: Effect of Harmonized Thermal Pasteurization Technologies. American Journal of Food Science and Technology, 9(3), 82-89.

http://pubs.sciepub.com/ajfst/9/3/3

18. Chakraborty, S., Rao, P. S., & Mishra, H. N. (2015). Kinetic modeling of polyphenoloxidase and peroxidase inactivation in pineapple (Ananas comosus L.) puree during high-pressure and thermal treatments. Innovative Food Science & Emerging Technologies, 27, 57-68.

https://doi.org/10.1016/j.ifset.2014.11.003

19. Chakraborty, S., Rao, P. S., & Mishra, H. N. (2016). Changes in quality attributes during storage of high-pressure and thermally processed pineapple puree. Food and Bioprocess Technology, 9(5), 768-791.

https://doi.org/10.1007/s11947-015-1663-0

20. Chakraborty, S., Rao, P. S., & Mishra, H. N. (2019). Modeling the inactivation of pectin methylesterase in pineapple puree during combined high-pressure and temperature treatments. Innovative Food Science & Emerging Technologies, 52, 271-281.

https://doi.org/10.1016/j.ifset.2019.01.008

21. Charles, F., Vidal, V., Olive, F., Filgueiras, H., Sallanon, H. J. I. F. S., & Technologies, E. (2013). Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. 18, 190-195.

https://doi.org/10.1016/j.ifset.2013.02.004

22. Chauhan, A. (2019). Mathematical modeling and comparative study of six drying methods based on energy consumption, nutrients retention, and drying time (MTech) IITMandi].

23. Cheng, L., Zhu, Z., & Sun, D. W. (2021). Impacts of high pressure assisted freezing on the denaturation of polyphenol oxidase. Food Chemistry, 335, 127485.

https://doi.org/10.1016/j.foodchem.2020.127485

24. Chew, S., Mohd Ghazali, H., Martin-Belloso, O., & Mohd Adzahan, N. (2014). Effects of combining ultraviolet and mild heat treatments on enzymatic activities and total phenolic contents in pineapple juice. Innovative Food Science & Emerging Technologies, 26.

https://doi.org/10.1016/j.ifset.2014.05.008

25. Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences, 12(4), 2202.

26. Choubey, S. (2021). STUDY ON BIOTIC STRESS MANAGEMENT PRACTICES ADOPTED BY THE SUGARCANE GROWERS OF SURAJPUR DISTRICT OF CHHATTISGARH.

27. Chutia, H., Kalita, D., Mahanta, C. L., Ojah, N., & Choudhury, A. J. (2019). Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma. LWT, 101, 625-629.

https://doi.org/10.1016/j.lwt.2018.11.071

28. Chutintrasri, B., & Noomhorm, A. (2006). Thermal inactivation of polyphenoloxidase in pineapple puree. LWT-Food Science and Technology, 39(5), 492-495.

29. Costa, M. G. M., Fonteles, T. V., de Jesus, A. L. T., Almeida, F. D. L., de Miranda, M. R. A., Fernandes, F. A. N., & Rodrigues, S. (2013). High-Intensity Ultrasound Processing of Pineapple Juice. Food and Bioprocess Technology, 6(4), 997-1006.

https://doi.org/10.1007/s11947-011-0746-9

30. Dolhaji, N. H., Muhamad, I. I., Ya’akub, H., & Abd Aziz, A. (2019). Evaluation of chilling injury and internal browning condition on quality attributes, phenolic content, and antioxidant capacity during sub-optimal cold storage of Malaysian cultivar pineapples. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 456-461.

31. Dong, S., Fan, L., Ma, Y., Du, J., & Xiang, Q. (2021). Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma: Kinetics and mechanisms. Lwt, 145, 111322.

32. Dong, S., Fan, L., Ma, Y., Du, J., & Xiang, Q. (2021). Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma: Kinetics and mechanisms. LWT, 145, 111322.

https://doi.org/10.1016/j.lwt.2021.111322

33. Feng, R., Zhao, Y., Zhu, C., & Mason, T. (2002). Enhancement of ultrasonic cavitation yield by multi-frequency sonication. Ultrasonics Sonochemistry, 9(5), 231-236.

34. Fernandes, F. A., Gallão, M. I., & Rodrigues, S. J. J. o. F. E. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. 90(2), 186-190.

https://doi.org/10.1016/j.jfoodeng.2008.06.021

35. Fernandes, F. A., Linhares Jr, F. E., & Rodrigues, S. J. U. s. (2008). Ultrasound as pre-treatment for drying of pineapple. 15(6), 1049-1054.

36. Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13(4), 741-768.

37. Garud, S. R., Priyanka, B. S., Rastogi, N. K., Prakash, M., & Negi, P. S. (2018). Efficacy of Ozone and Lactic Acid as Nonthermal Hurdles for Preservation of Sugarcane Juice. Ozone: Science & Engineering, 40(3), 198-208.

https://doi.org/10.1080/01919512.2017.1415802

38. Gavahian, M., & Chu, R. (2022). Ohmic Heating Extraction at Different Times, Temperatures, Voltages, and Frequencies: A New Energy-Saving Technique for Pineapple Core Valorization. Foods, 11(14).

https://doi.org/10.3390/foods11142015

39. Guangsen, T., Jiahu, G., Xiang, L., Yuanju, G., Tian, M., Fei, F., & Xiaolong, H. (2022). Enzymatic activity, browning, physiochemical and phenolic evaluation of fruit juices subjected to high pressure-CO2 processing at different temperatures. Food Science and Technology Research, 28(6), 467-478.

https://doi.org/10.3136/fstr.FSTR-D-22-00033

40. Hamdan, N., Lee, C. H., Wong, S. L., Fauzi, C., Zamri, N. M. A., & Lee, T. H. (2022). Prevention of Enzymatic Browning by Natural Extracts and Genome-Editing: A Review on Recent Progress. Molecules, 27(3).

https://doi.org/10.3390/molecules27031101

41. Hong, K., Xu, H., Wang, J., Zhang, L., Hu, H., Jia, Z., Gu, H., He, Q., & Gong, D. (2013). Quality changes and internal browning developments of summer pineapple fruit during storage at different temperatures. Scientia Horticulturae, 151, 68-74.

42. Hussain, S., Suntharalingam, S., & Siriwardana, T. (1998). The effect of packaging on the control of internal browning of pineapple.

43. Jaramillo Sánchez, G., Garcia Loredo, A. B., Contigiani, E. V., Gómez, P. L., Alzamora, S. M. J. I. J. o. F. S., & Technology. (2018). Inactivation kinetics of peroxidase and polyphenol oxidase in peach juice treated with gaseous ozone. 53, 347–355.

44. Jin, J., Ma, H., Wang, K., Yagoub, A. E.-G. A., Owusu, J., Qu, W., He, R., Zhou, C., & Ye, X. (2015). Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics Sonochemistry, 24, 55-64. https://doi.org/10.1016/j.ultsonch.2014.12.013

45. Kabir, M. F., & Ju, L. K. (2023). On optimization of enzymatic processes: Temperature effects on activity and long-term deactivation kinetics. Process Biochemistry, 130, 734-746.

46. Kogelschatz, U. J. P. c., & processing, p. (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. 23(1), 1-46.

https://doi.org/10.1023/a:1022470901385

47. Kuang, S., Hu, L., Zhang, S., Ren, J., Ramaswamy, H. S., & Yu, Y. (2023). Comparison of air freezing, liquid immersion freezing and pressure shift freezing on freezing time and quality of snakehead (Channa Argus) fillets. Innovative Food Science & Emerging Technologies, 88, 103450.

48. Lagnika, C., Adjovi, Y. C., Lagnika, L., Gogohounga, F. O., Do-Sacramento, O., Koulony, R. K., & Sanni, A. (2017). Effect of combining ultrasound and mild heat treatment on physicochemical, nutritional quality and microbiological properties of pineapple juice. Food and Nutrition Sciences, 8(2), 227-241.

https://doi.org/10.4236/fns.2017.82015

49. Leong, S. Y., Duque, S. M. M., Conde, L. A., Khrisanapant, P., & Oey, I. (2024). Addressing the opportunities of non-thermal food processing technologies in the ASEAN region context. International Journal of Food Science & Technology, 59(10), 7739-7753.

https://doi.org/10.1111/ijfs.17203

50. Li, Q., Wang, G., Zhang, L., & Zhu, S. (2023). AcbHLH144 transcription factor negatively regulates phenolic biosynthesis to modulate pineapple internal browning. Horticulture Research, 10(10).

https://doi.org/10.1093/hr/uhad185

51. Liang, Z., Yu, Y., Zou, B., Fu, M., Hu, T., Yin, X., ... & Cheng, L. (2024). The effect of structural changes on the activity of peroxidase with different initial state under high-pressure freezing. Food Chemistry, 459, 140314.

52. Liao, X., Xing, Y., Fan, X., Qiu, Y., Xu, Q., & Liu, X. (2023). Effect of Composite Edible Coatings Combined with Modified Atmosphere Packaging on the Storage Quality and Microbiological Properties of Fresh-Cut Pineapple. Foods, 12(6).

https://doi.org/10.3390/foods12061344

53. Llavata, B., García-Pérez, J. V., Simal, S., & Cárcel, J. A. J. C. O. i. F. S. (2020). Innovative pre-treatments to enhance food drying: A current review. 35, 20-26.

54. Makroo, H. A., Srivastava, B., & Jabeen, A. (2022). Influence of mild electric field (MEF) on polyphenol oxidase and quality attributes of pineapple juice during ohmic heating. LWT, 156, 113021.

https://doi.org/10.1016/j.lwt.2021.113021

55. Mala, T., Sadiq, M. B., & Anal, A. K. (2021). Optimization of thermosonication processing of pineapple juice to improve the quality attributes during storage. Journal of Food Measurement and Characterization, 15(5), 4325-4335.

56. Manzocco, L., Panozzo, A., & Nicoli, M. C. J. J. o. F. S. (2013). Inactivation of polyphenoloxidase by pulsed light. 78(8), E1183-E1187.

57. Marcel, E., Alexis, K., & Fran?ois, G. (2014). Effect of Thermal Process and Drying Principle on Color Loss of Pineapple Slices. American Journal of Food Science and Technology, 2(1), 17-20.

http://pubs.sciepub.com/ajfst/2/1/3

58. Mason, T. J. (2002). Uses of power ultrasound in chemistry and processing. Applied sonochemistry.

59. Meng, Y., Yang, Y., Chung, H., Lee, P. H., & Shao, C. (2018). Enhancing sustainability and energy efficiency in smart factories: A review. Sustainability, 10(12), 4779.

60. Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in microbiology, 8, 1706.

61. Moon, K. M., Kwon, E.-B., Lee, B., & Kim, C. Y. (2020). Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules, 25(12), 2754.

https://www.mdpi.com/1420-3049/25/12/2754

62. Moura, F. T. d., Silva, S. d. M., Sousa, F. d. A. R. d. M., Santos, K. M., Bastos, T. M. d. R., & Araújo, J. (2024). Application of pulsed electric field in reducing internal browning and maintaining the functional potential of ‘Pérola’pineapple. Revista Ciência Agronômica, 55, e20217851.

63. Murata, M. (2022). Food chemistry and biochemistry of enzymatic browning. Food Science and Technology Research, 28(1), 1-12.

https://doi.org/10.3136/fstr.FSTR-D-21-00130

64. Nath, P., Pandey, N., Samota, M., Sharma, K., Kale, S., Kannaujia, P., ... & Chauhan, O. P. (2022). Browning reactions in foods. In Advances in food chemistry: Food components, processing and preservation (pp. 117-159). Singapore: Springer Nature Singapore.

65. Oms-Oliu, G., Aguiló-Aguayo, I., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biology and Technology, 56(3), 216-222.

https://doi.org/10.1016/j.postharvbio.2009.12.011

66. Oms-Oliu, G., Aguiló-Aguayo, I., Martín-Belloso, O., Soliva-Fortuny, R. J. P. B., & Technology. (2010). Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). 56(3), 216-222.

67. Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed Light Treatments for Food Preservation. A Review. Food and Bioprocess Technology, 3(1), 13-23.

https://doi.org/10.1007/s11947-008-0147-x

68. Ong, M. K., Ali, A., Alderson, P. G., & Forney, C. F. (2014a). Effect of different concentrations of ozone on physiological changes associated to gas exchange, fruit ripening, fruit surface quality and defence-related enzymes levels in papaya fruit during ambient storage. Scientia Horticulturae, 179, 163-169.

69. Osae, R., Zhou, C., Xu, B., Tchabo, W., Tahir, H. E., Mustapha, A. T., & Ma, H. (2019). Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. Journal of food biochemistry, 43(5), e12832.

https://doi.org/10.1111/jfbc.12832

70. Pan, Y.-G., & Zu, H. (2012). Effect of UV-C radiation on the quality of fresh-cut pineapples. Procedia Engineering, 37, 113-119.

71. Pankaj, S. K., Misra, N. N., & Cullen, P. J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies, 19, 153-157.

https://doi.org/10.1016/j.ifset.2013.03.001

72. Pankaj, S., Misra, N., Cullen, P. J. I. F. S., & Technologies, E. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. 19, 153-157.

73. Pellicer, J. A., Navarro, P., Gómez-López, V. M. J. F., & Technology, B. (2018). Pulsed light inactivation of mushroom polyphenol oxidase: a fluorometric and spectrophotometric study. 11, 603-609.

74. Pipliya, S., Kumar, S., & Srivastav, P. P. (2022). Inactivation kinetics of polyphenol oxidase and peroxidase in pineapple juice by dielectric barrier discharge plasma technology. Innovative Food Science & Emerging Technologies, 80, 103081.

https://doi.org/10.1016/j.ifset.2022.103081

75. Polak, N., Kalisz, S., & Kruszewski, B. (2024). High-temperature short-time and ultra-high-temperature processing of juices, nectars and beverages: influences on enzyme, microbial inactivation and retention of bioactive compounds. Applied Sciences, 14(19), 8978.

76. Puglisi, I. (2023). Marketing food in Japan-KitKat's success in Japan: a case study.

77. Rasane, P., Singh, J., Kaur, S., Bakshi, M., Gunjal, M., Kaur, J., ... & Mahato, D. K. (2024). Strategic advances in the management of browning in fruits and vegetables. Food and Bioprocess Technology, 17(2), 325-350.

78. Rattanathanalerk, M., Chiewchan, N., & Srichumpoung, W. (2005). Effect of thermal processing on the quality los of pineapple juice. Journal of Food Engineering - J FOOD ENG, 66, 259-265.

https://doi.org/10.1016/j.jfoodeng.2004.03.016

79. Roobab, U., Abida, A., Afzal, R., Madni, G. M., Zeng, X. A., Rahaman, A., & Aadil, R. M. (2022). Impact of high-pressure treatments on enzyme activity of fruit-based beverages: an overview. International Journal of Food Science and Technology, 57(2), 801-815.

80. Rosenthal, A., Ledward, D., Defaye, A., Gilmour, S., & Trinca, L. (2002). Effect of pressure, temperature, time and storage on peroxidase and polyphenol oxidase from pineapple. In Progress in Biotechnology (Vol. 19, pp. 525-532). Elsevier.

https://doi.org/10.1016/s0921-0423(02)80148-4

81. Saeeduddin, M., Abid, M., Jabbar, S., Wu, T., Yuan, Q., Riaz, A., Hu, B., Zhou, L., & Zeng, X. (2017). Nutritional, microbial and physicochemical changes in pear juice under ultrasound and commercial pasteurization during storage. Journal of Food Processing and Preservation, 41(6), e13237.

82. Sari, L. K., Setha, S., & Naradisorn, M. (2016). Effect of UV-C irradiation on postharvest quality of ‘Phulae’pineapple. Scientia Horticulturae, 213, 314-320.

https://doi.org/10.1016/j.scienta.2016.09.049

83. Sew, C. C., Ghazali, H. M., Martín-Belloso, O., & Noranizan, M. A. (2014). Effects of combining ultraviolet and mild heat treatments on enzymatic activities and total phenolic contents in pineapple juice. Innovative Food Science & Emerging Technologies, 26, 511-516.

84. Shaik, L., & Chakraborty, S. (2022). Nonthermal pasteurization of pineapple juice: A review on the potential of achieving microbial safety and enzymatic stability. Comprehensive Reviews in Food Science and Food Safety, 21(6), 4716-4737.

https://doi.org/10.1111/1541-4337.13042

85. Shevkani, K. (2024). Food-based natural mitigators of enzymatic browning on fruits and vegetables: insights into active constituents, modes of action, and challenges. Food and Bioprocess Technology, 17(9), 2561-2582.

86. Sidhu, R. S., Bound, S. A., & Swarts, N. D. (2023). Internal flesh browning in apple and its predisposing factors—A review. Physiologia, 3(2), 145-172.

87. Silva, F. V. M., & Sulaiman, A. (2022). Control of Enzymatic Browning in Strawberry, Apple, and Pear by Physical Food Preservation Methods: Comparing Ultrasound and High-Pressure Inactivation of Polyphenoloxidase. Foods, 11(13).

https://doi.org/10.3390/foods11131942

88. Song, K., Gu, H., Golding, J. B., Pristijono, P., Hou, X., Zhang, L., Hong, K., Yao, Q., & Zhang, X. (2022). Insight into the physiological and molecular mechanisms of hot air treatment which reduce internal browning in winter-harvested pineapples. Postharvest Biology and Technology, 194, 112066.

89. Sui, X., Meng, Z., Dong, T., Fan, X., & Wang, Q. (2023). Enzymatic browning and polyphenol oxidase control strategies. Current Opinion in Biotechnology, 81, 102921.

https://doi.org/10.1016/j.copbio.2023.102921

90. Thatoi, H., Rath, S., & Kheti, N. K. (2023). Optimisation of Manganese Peroxidase (MnP) activity of Enterobacter wuhouensis using Response Surface Method and evaluation of Its maillard reaction products along with lignin degradation ability. Indian Journal of Microbiology, 63(4), 604-620.

91. Tilley, A., McHenry, M. P., McHenry, J. A., Solah, V., & Bayliss, K. (2023). Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Curr Res Food Sci, 7, 100623.

https://doi.org/10.1016/j.crfs.2023.100623

92. Tzortzakis, N., & Chrysargyris, A. (2017). Postharvest ozone application for the preservation of fruits and vegetables. Food Reviews International, 33(3), 270-315.

https://doi.org/10.1080/87559129.2016.1175015

93. Vollmer, K., Chakraborty, S., Bhalerao, P. P., Carle, R., Frank, J., & Steingass, C. B. (2020a). Effect of pulsed light treatment on natural microbiota, enzyme activity, and phytochemical composition of pineapple (Ananas comosus [L.] Merr.) juice. Food and Bioprocess Technology, 13, 1095-1109.

94. Vollmer, K., Santarelli, S., Vásquez-Caicedo, A. L., Iglesias, S. V., Frank, J., Carle, R., & Steingass, C. B. (2020). Non-thermal processing of pineapple (Ananas comosus [L.] Merr.) juice using continuous pressure change technology (PCT): Effects on physical traits, microbial loads, enzyme activities, and phytochemical composition. Food and Bioprocess Technology, 13, 1833-1847.

https://doi.org/10.1007/s11947-020-02520-y

95. Wang, C., Meng, L., Zhang, G., Yang, X., Pang, B., Cheng, J., He, B., & Sun, F. (2024a). Unraveling crop enzymatic browning through integrated omics. Frontiers in Plant Science, 15, 1342639.

96. Weaver, C. M. (1974). Factors influencing enzymatic browning of ripening bananas.

97. Weerahewa, H., & Adikaram, N. (2005). Some biochemical factors underlying the differential susceptibility of two pineapple cultivars to internal browning disorder.

98. Xu, B., Sylvain Tiliwa, E., Wei, B., Wang, B., Hu, Y., Zhang, L., Mujumdar, A. S., Zhou, C., & Ma, H. (2022). Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. Ultrasonics Sonochemistry, 88, 106083.

https://doi.org/10.1016/j.ultsonch.2022.106083

99. Youryon, P., Wongs-Aree, C., McGlasson, W., Glahan, S., & Kanlayanarat, S. (2011). Development of internal browning during low temperature storage of pineapple cv. Trad‐Srithong fruit harvested at different times of the day. Journal of Applied Horticulture, 13(2), 122-126.

100. Zawawi, N. A. F., Hazmi, N. A. M., How, M. S., Kantono, K., Silva, F. V., & Sulaiman, A. (2022). Thermal, high pressure, and ultrasound inactivation of various fruit cultivars’ polyphenol oxidase: Kinetic inactivation models and estimation of treatment energy requirement. Applied Sciences, 12(4), 1864.

101. Zhang, L., Li, S., Wang, A., Li, J., & Zong, W. (2017). Mild heat treatment inhibits the browning of fresh-cut Agaricus bisporus during cold storage. LWT-Food Science and Technology, 82, 104-112.

https://doi.org/10.1016/j.lwt.2017.04.035

102. Zhang, Q., Rao, X., Zhang, L., He, C., Yang, F., & Zhu, S. (2016). Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs. Sci Rep, 6, 33344.

https://doi.org/10.1038/srep33344

Downloads

Published

2025-09-30

How to Cite

Ahmed, R. F., Murad, S., Shafiq, L., Basharat, S., Saeed, K., Abid, R., Ashfaq, Z., Waqar ul Hassan, & Mazhar, A. (2025). Inhibition of Enzymatic Browning and Oxidation in Pineapple Fruit by Different Thermal and Non-Thermal Techniques. Indus Journal of Bioscience Research, 3(9), 382-396. https://doi.org/10.70749/ijbr.v3i9.2645