Advancements and Challenges in Anti-aging Research: Exploring Anti-aging Pathways to Longevity and Disease Prevention

Authors

DOI:

https://doi.org/10.70749/ijbr.v3i12.2684

Keywords:

Aging, Anti-aging Research, Bioprinting, Challenges, Diseases, DNA, Genetic, Lifespan.

Abstract

Anti-aging research has become central to understanding the biological processes that regulate aging and affect the health span and lifespan. This narrative review summarizes the evolution of anti-aging research from early theories to major 20th-century breakthroughs, which established a foundation for this research, particularly in cellular senescence and antioxidant mechanisms. Now, contemporary research defines aging as the complex interplay shaped by genetic, molecular, and environmental factors. Revolutionary concepts such as caloric restriction, oxidative stress, telomere biology and cellular aging explained the basic mechanisms of aging. Current genetic and molecular approaches, regenerative medicine, and elaboration of anti-aging compounds such as NAD⁺ enhancers, metformin, and rapamycin push the range of therapeutic strategies for aging diseases. Moreover, genetic findings of longevity, such as SIRT1 and FOXO3, with their genome-editing technologies like CRISPR, opened new directions for interventions into aging. Advancements in stem cell therapies, tissue engineering, and personalized medicine aim to extend healthy longevity. Despite these advances, anti-aging research has many difficulties, such as ethical, scientific, and regulatory ones. However, anti-aging research may help to prevent chronic diseases, improving the quality of life, and socioeconomic and psychological outcomes. Future directions point toward emerging technologies, interdisciplinary collaborations, and global contributions of researchers to extend human health and improve lifespan.

Downloads

Download data is not yet available.

References

1. Fialová, D., & Desplenter, F. (2016). Aging of the population, clinical pharmacy services, and interdisciplinary cooperation in the optimization of pharmacotherapy in older patients. Drugs & Aging, 33(3), 163-167.

https://doi.org/10.1007/s40266-016-0361-6

2. Javed, A. (2022). Mental health of older adults: An agenda for action. Consortium Psychiatricum, 3(1), 6-7.

https://doi.org/10.17816/cp156

3. Augusto, S., Kaelber, D. C., & Tang, W. W. (2025). Testosterone therapy in patients with heart failure and protein-calorie malnutrition: Insights from a propensity-matched cohort study. Current Problems in Cardiology, 50(7), 103070.

https://doi.org/10.1016/j.cpcardiol.2025.103070

4. Alegre, G. F., & Pastore, G. M. (2023). NAD+ Precursors nicotinamide Mononucleotide (NMN) and nicotinamide Riboside (NR): Potential dietary contribution to health. Current Nutrition Reports, 12(3), 445-464.

https://doi.org/10.1007/s13668-023-00475-y

5. Aliper, A., Jellen, L., Cortese, F., Artemov, A., Karpinsky-Semper, D., Moskalev, A., Swick, A. G., & Zhavoronkov, A. (2017). Towards natural mimetics of metformin and rapamycin. Aging, 9(11), 2245-2268.

https://doi.org/10.18632/aging.101319

6. Allen, J. O. (2015). Ageism as a risk factor for chronic disease. The Gerontologist, 56(4), 610-614.

https://doi.org/10.1093/geront/gnu158

7. Amorim, J. A., Coppotelli, G., Rolo, A. P., Palmeira, C. M., Ross, J. M., & Sinclair, D. A. (2022). Mitochondrial and metabolic dysfunction in aging and age-related diseases. Nature Reviews Endocrinology, 18(4), 243-258.

https://doi.org/10.1038/s41574-021-00626-7

8. Anisimov, V. N. (2013). Metformin: Do we finally have an anti-aging drug? Cell Cycle, 12(22), 3483-3489.

https://doi.org/10.4161/cc.26928

9. Apetroaei, M., Fragkiadaki, P., Velescu, B. Ș., Baliou, S., Renieri, E., Dinu-Pirvu, C. E., Drăgănescu, D., Vlăsceanu, A. M., Nedea, M. I., Udeanu, D. I., Docea, A. O., Tsatsakis, A., & Arsene, A. L. (2024). Pharmacotherapeutic considerations on telomere biology: The positive effect of pharmacologically active substances on telomere length. International Journal of Molecular Sciences, 25(14), 7694.

https://doi.org/10.3390/ijms25147694

10. Arriola Apelo, S. I., Pumper, C. P., Baar, E. L., Cummings, N. E., & Lamming, D. W. (2016). Intermittent administration of Rapamycin extends the life span of female C57BL/6J mice. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 71(7), 876-881.

https://doi.org/10.1093/gerona/glw064

11. Ashraf, H. (2002). Older people must be on the health and development policy agenda. The Lancet, 359(9314), 1321.

https://doi.org/10.1016/s0140-6736(02)08331-9

12. Baghdadi, M., Nespital, T., Monzó, C., Deelen, J., Grönke, S., & Partridge, L. (2024). Intermittent rapamycin feeding recapitulates some effects of continuous treatment while maintaining lifespan extension. Molecular Metabolism, 81, 101902.

https://doi.org/10.1016/j.molmet.2024.101902

13. Balch, W. E., Morimoto, R. I., Dillin, A., & Kelly, J. W. (2008). Adapting Proteostasis for disease intervention. Science, 319(5865), 916-919.

https://doi.org/10.1126/science.1141448

14. Duarte, L. F. (2020). The vitality of vitalism in contemporary anthropology: Longing for an evergreen tree of life. Anthropological Theory, 21(2), 131-153.

https://doi.org/10.1177/1463499620923546

15. Kalache, A. (2009). Towards age-friendly societies: From research to policy, from policy to society. International Journal of Integrated Care, 9(5).

https://doi.org/10.5334/ijic.388

16. Latorre Barragán, M. F., García Cárdenas, F. R., & Culqui Sánchez, M. V. (2024). Stimulation of cellular longevity using CRISPR-cas9 in aging-associated genes. Interamerican Journal of Health Sciences, 4, 98.

https://doi.org/10.59471/ijhsc202498

17. Beerman, I., & Rossi, D. J. (2014). Epigenetic regulation of hematopoietic stem cell aging. Experimental Cell Research, 329(2), 192-199.

https://doi.org/10.1016/j.yexcr.2014.09.013

18. Bellu, E., Medici, S., Coradduzza, D., Cruciani, S., Amler, E., & Maioli, M. (2021). Nanomaterials in skin regeneration and rejuvenation. International Journal of Molecular Sciences, 22(13), 7095.

https://doi.org/10.3390/ijms22137095

19. Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., & Blasco, M. A. (2012). Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Molecular Medicine, 4(8), 691-704.

https://doi.org/10.1002/emmm.201200245

20. BJORNSSON, H. (2004). An integrated epigenetic and genetic approach to common human disease. Trends in Genetics, 20(8), 350-358.

https://doi.org/10.1016/j.tig.2004.06.009

21. Bonomini, F., Rodella, L. F., & Rezzani, R. (2015). Metabolic syndrome, aging and involvement of oxidative stress. Aging and disease, 6(2), 109.

https://doi.org/10.14336/ad.2014.0305

22. Bové, J., Martínez-Vicente, M., & Vila, M. (2011). Fighting neurodegeneration with rapamycin: Mechanistic insights. Nature Reviews Neuroscience, 12(8), 437-452.

https://doi.org/10.1038/nrn3068

23. Cai, R., Gimenez-Camino, N., Xiao, M., Bi, S., & DiVito, K. A. (2023). Technological advances in three-dimensional skin tissue engineering. REVIEWS ON ADVANCED MATERIALS SCIENCE, 62(1).

https://doi.org/10.1515/rams-2022-0289

24. Cantó, C., Houtkooper, R., Pirinen, E., Youn, D., Oosterveer, M., Cen, Y., Fernandez-Marcos, P., Yamamoto, H., Andreux, P., Cettour-Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A., & Auwerx, J. (2012). The NAD+ precursor nicotinamide Riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism, 15(6), 838-847.

https://doi.org/10.1016/j.cmet.2012.04.022

25. Caobi, A., Dutta, R. K., Garbinski, L. D., Esteban-Lopez, M., Ceyhan, Y., Andre, M., Manevski, M., Ojha, C. R., Lapierre, J., Tiwari, S., Parira, T., & El-Hage, N. (2020). The impact of CRISPR-cas9 on age-related disorders: From pathology to therapy. Aging and disease, 11(4), 895.

https://doi.org/10.14336/ad.2019.0927

26. Cătană, C., Atanasov, A. G., & Berindan-Neagoe, I. (2018). Natural products with anti-aging potential: Affected targets and molecular mechanisms. Biotechnology Advances, 36(6), 1649-1656.

https://doi.org/10.1016/j.biotechadv.2018.03.012

27. Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European Spine Journal, 17(S4), 467-479.

https://doi.org/10.1007/s00586-008-0745-3

28. Chen, C., Zeldich, E., Li, Y., Yuste, A., & Abraham, C. R. (2018). Activation of the anti-aging and cognition-enhancing gene Klotho by CRISPR-dcas9 transcriptional effector complex. Journal of Molecular Neuroscience, 64(2), 175-184.

https://doi.org/10.1007/s12031-017-1011-0

29. Chen, X., Liu, F., Song, X., Wang, Z., Dong, Z., Hu, Z., Lan, R., Guan, W., Zhou, T., Xu, X., Lei, H., Ye, Z., Peng, E., Du, L., & Zhuang, Q. (2010). Rapamycin regulates Akt and ERK phosphorylation through mTORC1 and mTORC2 signaling pathways. Molecular Carcinogenesis, 49(6), 603-610.

https://doi.org/10.1002/mc.20628

30. Mokdad, H. (2024). Burden of disease scenarios by state in the USA, 2022-50: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet (London, England), 404(10469), 2341–2370.

https://doi.org/10.1016/S0140-6736(24)02246-3

31. Conti, P. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19: Anti-inflammatory strategies. Journal of Biological Regulators and Homeostatic Agents, 34(2), 1.

https://doi.org/10.23812/conti-e

32. Conway, M. E. (2021). Emerging moonlighting functions of the branched-chain Aminotransferase proteins. Antioxidants & Redox Signaling, 34(13), 1048-1067.

https://doi.org/10.1089/ars.2020.8118

33. Daikuara, L. Y., Chen, X., Yue, Z., Skropeta, D., Wood, F. M., Fear, M. W., & Wallace, G. G. (2021). 3D Bioprinting constructs to facilitate skin regeneration. Advanced Functional Materials, 32(3).

https://doi.org/10.1002/adfm.202105080

34. Datta, H. S., Mitra, S. K., Paramesh, R., & Patwardhan, B. (2011). Theories and management of aging: Modern and ayurveda perspectives. Evidence-Based Complementary and Alternative Medicine, 2011(1).

https://doi.org/10.1093/ecam/nep005

35. De Araújo, R., Lôbo, M., Trindade, K., Silva, D., & Pereira, N. (2019). Fibroblast growth factors: A controlling mechanism of skin aging. Skin Pharmacology and Physiology, 32(5), 275-282.

https://doi.org/10.1159/000501145

36. Morris, B. J., Willcox, D. C., Donlon, T. A., & Willcox, B. J. (2015). FOXO3: A Major Gene for Human Longevity - A Mini-Review. Gerontology, 61(6), 515-525.

https://doi.org/10.1159/000375235

37. El Assaad, N., Chebly, A., Salame, R., Achkar, R., Bou Atme, N., Akouch, K., Rafoul, P., Hanna, C., Abou Zeid, S., Ghosn, M., & Khalil, C. (2024). Anti-aging based on stem cell therapy: A scoping review. World Journal of Experimental Medicine, 14(3).

https://doi.org/10.5493/wjem.v14.i3.97233

38. Elbaky, N. A., El-Orabi, N. F., Fadda, L. M., Abd-Elkader, O. H., & Ali, H. M. (2018). Role of N-acetylcysteine and coenzyme Q10 in the amelioration of myocardial energy expenditure and oxidative stress, induced by carbon tetrachloride intoxication in rats. Dose-Response, 16(3).

https://doi.org/10.1177/1559325818790158

39. Feng, R., Wu, S., Li, R., Huang, K., Zeng, T., Zhou, Z., Zhong, X., Songyang, Z., & Liu, F. (2023). Mtorc1-induced bone marrow-derived Mesenchymal stem cell exhaustion contributes to the bone abnormalities in klotho-deficient mice of premature aging. Stem Cells and Development, 32(11-12), 331-345.

https://doi.org/10.1089/scd.2022.0243

40. Ferrucci, L., & Fabbri, E. (2018). Inflammaging: Chronic inflammation in aging, cardiovascular disease, and frailty. Nature Reviews Cardiology, 15(9), 505-522.

https://doi.org/10.1038/s41569-018-0064-2

41. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of aging. Nature, 408(6809), 239-247.

https://doi.org/10.1038/35041687

42. Flachsbart, F., Caliebe, A., Kleindorp, R., Blanché, H., Von Eller-Eberstein, H., Nikolaus, S., Schreiber, S., & Nebel, A. (2009). Association of FOXO3A variation with human longevity confirmed in German centenarians. Proceedings of the National Academy of Sciences, 106(8), 2700-2705.

https://doi.org/10.1073/pnas.0809594106

43. Flynn, J. M., & Melov, S. (2013). SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radical Biology and Medicine, 62, 4-12.

https://doi.org/10.1016/j.freeradbiomed.2013.05.027

44. Fülöp, T., Larbi, A., & Witkowski, J. (2019). Human Inflammaging. Gerontology, 65(5), 495-504.

https://doi.org/10.1159/000497375

45. Fulop, T., Larbi, A., Witkowski, J. M., McElhaney, J., Loeb, M., Mitnitski, A., & Pawelec, G. (2010). Aging, frailty and age-related diseases. Biogerontology, 11(5), 547-563.

https://doi.org/10.1007/s10522-010-9287-2

46. Gandhi, L., Camidge, D. R., Ribeiro de Oliveira, M., Bonomi, P., Gandara, D., Khaira, D., Hann, C. L., McKeegan, E. M., Litvinovich, E., Hemken, P. M., Dive, C., Enschede, S. H., Nolan, C., Chiu, Y., Busman, T., Xiong, H., Krivoshik, A. P., Humerickhouse, R., Shapiro, G. I., … Rudin, C. M. (2011). Phase I study of Navitoclax (ABT-263), a novel bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. Journal of Clinical Oncology, 29(7), 909-916.

https://doi.org/10.1200/jco.2010.31.6208

47. Gao, G., & Cui, X. (2015). Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnology Letters, 38(2), 203-211.

https://doi.org/10.1007/s10529-015-1975-1

48. García-García, V. A., Alameda, J. P., Page, A., & Casanova, M. L. (2021). Role of NF-κb in aging and age-related diseases: Lessons from genetically modified mouse models. Cells, 10(8), 1906.

https://doi.org/10.3390/cells10081906

49. Gems, D. (2011). Tragedy and delight: The ethics of decelerated aging. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1561), 108-112.

https://doi.org/10.1098/rstb.2010.0288

50. Giannakou, M. E., & Partridge, L. (2004). The interaction between FOXO and SIRT1: Tipping the balance towards survival. Trends in Cell Biology, 14(8), 408-412.

https://doi.org/10.1016/j.tcb.2004.07.006

51. Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products. Dermato-Endocrinology, 4(3), 259-270.

https://doi.org/10.4161/derm.22028

52. Griñán-Ferré, C., Bellver-Sanchis, A., Guerrero, A., & Pallàs, M. (2024). Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacological Research, 205, 107247.

https://doi.org/10.1016/j.phrs.2024.107247

53. Grinin, L., Grinin, A., & Korotayev, A. (2024). Global aging and the medicine of the future. World Futures, 81(1), 35-62.

https://doi.org/10.1080/02604027.2024.2424723

54. Guarasci, F., D'Aquila, P., Montesanto, A., Corsonello, A., Bellizzi, D., & Passarino, G. (2019). Individual DNA methylation profile is correlated with age and can be targeted to modulate healthy aging and longevity. Current Pharmaceutical Design, 25(39), 4139-4149.

https://doi.org/10.2174/1381612825666191112095655

55. Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 7(1).

https://doi.org/10.1038/s41392-022-01251-0

56. Halim, M., & Halim, A. (2019). The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2), 1165-1172.

https://doi.org/10.1016/j.dsx.2019.01.040

57. Han, F., Meng, Q., Xie, E., Li, K., Hu, J., Chen, Q., Li, J., & Han, F. (2023). Engineered biomimetic micro/nano-materials for tissue regeneration. Frontiers in Bioengineering and Biotechnology, 11.

https://doi.org/10.3389/fbioe.2023.1205792

58. Harman, D. (2002). Aging: A theory based on free radical and radiation chemistry. Science of Aging Knowledge Environment, 2002(37).

https://doi.org/10.1126/sageke.2002.37.cp14

59. Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., & Miller, R. A. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460(7253), 392-395.

https://doi.org/10.1038/nature08221

60. Hayflick, L., & Moorhead, P. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25(3), 585-621.

https://doi.org/10.1016/0014-4827(61)90192-6

61. Hayflick, L. (2003). Modulating aging, longevity determination and the diseases of old age. Modulating Aging and Longevity, 1-15.

https://doi.org/10.1007/978-94-017-0283-6_1

62. Hosseini, M., & Shafiee, A. (2021). Engineering Bioactive scaffolds for skin regeneration. Small, 17(41).

https://doi.org/10.1002/smll.202101384

63. Huidobro, C., Fernandez, A. F., & Fraga, M. F. (2013). Aging epigenetics: Causes and consequences. Molecular Aspects of Medicine, 34(4), 765-781.

https://doi.org/10.1016/j.mam.2012.06.006

64. Hull, E. E., Montgomery, M. R., & Leyva, K. J. (2016). HDAC inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. BioMed Research International, 2016, 1-15.

https://doi.org/10.1155/2016/8797206

65. Johnson, S., & Imai, S. (2018). NAD+ biosynthesis, aging, and disease. F1000Research, 7, 132.

https://doi.org/10.12688/f1000research.12120.1

66. Kang, M. S., Jang, J., Jo, H. J., Kim, W., Kim, B., Chun, H., Lim, D., & Han, D. (2022). Advances and innovations in 3D Bioprinting skin. Biomolecules, 13(1), 55.

https://doi.org/10.3390/biom13010055

67. Kenyon, C., Chang, J., Gensch, E., Rudner, A., & Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature, 366(6454), 461-464.

https://doi.org/10.1038/366461a0

68. Kenyon, C. (2011). The first long-lived mutants: Discovery of the insulin/IGF-1 pathway for aging. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1561), 9-16.

https://doi.org/10.1098/rstb.2010.0276

69. Keshavarz, M., Xie, K., Schaaf, K., Bano, D., & Ehninger, D. (2022). Targeting the “hallmarks of aging” to slow aging and treat age-related disease: Fact or fiction? Molecular Psychiatry, 28(1), 242-255.

https://doi.org/10.1038/s41380-022-01680-x

70. Khorsandi, D., Moghanian, A., & Nazari, R. (2016). Personalized medicine: Regulation of genes in human skin aging. Journal of Allergy & Therapy, 07(06).

https://doi.org/10.4172/2155-6121.1000245

71. Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., & Miller, R. A. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460(7253), 392-395.

https://doi.org/10.1038/nature08221

72. Laiva, A. L., O’Brien, F. J., & Keogh, M. B. (2021). Anti-aging β-klotho gene-activated scaffold promotes Rejuvenative wound healing response in human adipose-derived stem cells. Pharmaceuticals, 14(11), 1168.

https://doi.org/10.3390/ph14111168

73. Lamming, D. W., Ye, L., Sabatini, D. M., & Baur, J. A. (2013). Rapalogs and mTOR inhibitors as anti-aging therapeutics. Journal of Clinical Investigation, 123(3), 980-989.

https://doi.org/10.1172/jci64099

74. Li, Y., Hao, J., Hu, Z., Yang, Y., Zhou, Q., Sun, L., & Wu, J. (2022). Current status of clinical trials assessing mesenchymal stem cell therapy for Graft versus host disease: A systematic review. Stem Cell Research & Therapy, 13(1).

https://doi.org/10.1186/s13287-022-02751-0

75. Lombardi, F., Augello, F. R., Ciafarone, A., Ciummo, V., Altamura, S., Cinque, B., & Palumbo, P. (2024). 3D models currently proposed to investigate human skin aging and explore preventive and reparative approaches: A descriptive review. Biomolecules, 14(9), 1066.

https://doi.org/10.3390/biom14091066

76. Lopes-Paciencia, S., Saint-Germain, E., Rowell, M., Ruiz, A. F., Kalegari, P., & Ferbeyre, G. (2019). The senescence-associated secretory phenotype and its regulation. Cytokine, 117, 15-22.

https://doi.org/10.1016/j.cyto.2019.01.013

77. Luengo-Fernandez, R., Walli-Attaei, M., Gray, A., Torbica, A., Maggioni, A. P., Huculeci, R., Bairami, F., Aboyans, V., Timmis, A. D., Vardas, P., & Leal, J. (2023). Economic burden of cardiovascular diseases in the European Union: A population-based cost study. European Heart Journal, 44(45), 4752-4767.

https://doi.org/10.1093/eurheartj/ehad583

78. Lutz, M. (2023). Ethical challenges in research regarding aging population. Medwave, 23(08), e2714-e2714.

https://doi.org/10.5867/medwave.2023.08.2714

79. Sanada, F., Hayashi, S., & Morishita, R. (2025). Targeting the hallmarks of aging: Mechanisms and therapeutic opportunities. Frontiers in Cardiovascular Medicine, 12.

https://doi.org/10.3389/fcvm.2025.1631578

80. Mannick, J. B., & Lamming, D. W. (2023). Targeting the biology of aging with mTOR inhibitors. Nature Aging, 3(6), 642–660.

https://doi.org/10.1038/s43587-023-00416-y

81. Martens, C. R., Denman, B. A., Mazzo, M. R., Armstrong, M. L., Reisdorph, N., McQueen, M. B., Chonchol, M., & Seals, D. R. (2018). Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nature Communications, 9(1).

https://doi.org/10.1038/s41467-018-03421-7

82. Mcdonald, R., & Ramsey, J. (2010). Honoring Clive McCay and 75 years of calorie restriction research. SciVee.

https://doi.org/10.4016/18433.01

83. Mitchell, E., & Walker, R. (2020). Global aging: Successes, challenges and opportunities. British Journal of Hospital Medicine, 81(2), 1-9.

https://doi.org/10.12968/hmed.2019.0377

84. Mor, V. (2005). The compression of morbidity hypothesis: A review of research and prospects for the future. Journal of the American Geriatrics Society, 53(9s).

https://doi.org/10.1111/j.1532-5415.2005.53496.x

85. Iqbal, Q. M., Iqbal, Z., Iqbal, S., Aftab, M. T., & Rashid, A. (2025). A comprehensive study of BTD: Total reported variants, in-silico analyses and overview of functional studies. Indus Journal of Bioscience Research, 3(10), 1-9.

https://doi.org/10.70749/ijbr.v3i10.2372

86. Morris, B. J., Willcox, D. C., Donlon, T. A., & Willcox, B. J. (2015). FOXO3: a major gene for human longevity-a mini-review. Gerontology, 61(6), 515-525.

https://doi.org/10.1159/000375235

87. Nobili, A., Garattini, S., & Mannucci, P. M. (2011). Multiple diseases and polypharmacy in the elderly: Challenges for the internist of the third millennium. Journal of Comorbidity, 1(1), 28-44.

https://doi.org/10.15256/joc.2011.1.4

88. North, B. J., & Sinclair, D. A. (2012). The intersection between aging and cardiovascular disease. Circulation Research, 110(8), 1097-1108.

https://doi.org/10.1161/circresaha.111.246876

89. Risbud, M., Novais, E., Tran, V., Darris, K., Roupas, A., Sessions, G., Shapiro, I., & Diekman, B. (2021). Long-term treatment with senolytic drugs Dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice.

https://doi.org/10.21203/rs.3.rs-123815/v1

90. Novais, P., Silva, P. M., Amorim, I., & Bousbaa, H. (2021). Second-generation Antimitotics in cancer clinical trials. Pharmaceutics, 13(7), 1011.

https://doi.org/10.3390/pharmaceutics13071011

91. Novelle, M. G., Ali, A., Diéguez, C., Bernier, M., & De Cabo, R. (2016). Metformin: A hopeful promise in aging research. Cold Spring Harbor Perspectives in Medicine, 6(3), a025932.

https://doi.org/10.1101/cshperspect.a025932

92. Nowak, A., Zagórska-Dziok, M., Perużyńska, M., Cybulska, K., Kucharska, E., Ossowicz-Rupniewska, P., Piotrowska, K., Duchnik, W., Kucharski, Ł., Sulikowski, T., Droździk, M., & Klimowicz, A. (2022). Corrigendum: Assessment of the anti-inflammatory, antibacterial and anti-aging properties and possible use on the skin of hydrogels containing epilobium angustifolium L. extracts. Frontiers in Pharmacology, 13.

https://doi.org/10.3389/fphar.2022.991766

93. Ferrucci, L., & Fabbri, E. (2018). Inflammaging: Chronic inflammation in aging, cardiovascular disease, and frailty. Nature Reviews Cardiology, 15(9), 505-522.

https://doi.org/10.1038/s41569-018-0064-2

94. Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., Li, M., Lam, D., Kurita, M., Beyret, E., Araoka, T., Vazquez-Ferrer, E., Donoso, D., Roman, J. L., Xu, J., Rodriguez Esteban, C., Nuñez, G., Nuñez Delicado, E., Campistol, J. M., … Izpisua Belmonte, J. C. (2016). In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell, 167(7), 1719-1733.e12.

https://doi.org/10.1016/j.cell.2016.11.052

95. Ok, S. (2022). Insights into the anti-aging prevention, diagnostic medicine, and healthcare. Diagnostics, 12(4), 819.

https://doi.org/10.3390/diagnostics12040819

96. Pacinella, G., Ciaccio, A. M., & Tuttolomondo, A. (2022). Endothelial dysfunction and chronic inflammation: The cornerstones of vascular alterations in age-related diseases. International Journal of Molecular Sciences, 23(24), 15722.

https://doi.org/10.3390/ijms232415722

97. Kohly, R., Zajner, C., Huang, R., Popovic, M., Kertes, P., & Muni, R. (2025). Associations between cataract and cognitive impairment in a sample of the United States population.

https://doi.org/10.21203/rs.3.rs-7189919/v1

98. Peng, Y., Ding, L., Song, M., Xiao, Z., Lv, J., & Liu, G. (2023). Acting on ethics and governance of aging research. Trends in Molecular Medicine, 29(6), 419-421.

https://doi.org/10.1016/j.molmed.2023.03.004

99. Pestieau, P., & Ponthiere, G. (2013). Policy implications of changing longevity. CESifo Economic Studies, 60(1), 178-212.

https://doi.org/10.1093/cesifo/ifs042

100. Pezone, A., Olivieri, F., Napoli, M. V., Procopio, A., Avvedimento, E. V., & Gabrielli, A. (2023). Inflammation and DNA damage: Cause, effect or both. Nature Reviews Rheumatology, 19(4), 200-211.

https://doi.org/10.1038/s41584-022-00905-1

101. Pezzola, A., & Sweet, C. M. (2016). Global pharmaceutical regulation: The challenge of integration for developing states. Globalization and Health, 12(1).

https://doi.org/10.1186/s12992-016-0208-2

102. Poljsak, B., & Milisav, I. (2016). NAD+ as the link between oxidative stress, inflammation, caloric restriction, exercise, DNA repair, longevity, and health span. Rejuvenation Research, 19(5), 406-413.

https://doi.org/10.1089/rej.2015.1767

103. Popescu, I., Deelen, J., Illario, M., & Adams, J. (2023). Challenges in anti‐aging medicine–trends in biomarker discovery and therapeutic interventions for a healthy lifespan. Journal of Cellular and Molecular Medicine, 27(18), 2643-2650.

https://doi.org/10.1111/jcmm.17912

104. Afraz, E. S., Hoseinikhah, S. A., & Moradikor, N. (2025). Recent advances in aging-related diseases: Accelerated aging, molecular mechanisms, interventions, and therapies. Aging and disease, 16(4), 1785.

https://doi.org/10.14336/ad.2025.10618

105. Qian, M., & Liu, B. (2018). Pharmaceutical intervention of aging. Advances in Experimental Medicine and Biology, 235-254.

https://doi.org/10.1007/978-981-13-1117-8_15

106. Ramunas, J., Yakubov, E., Brady, J. J., Corbel, S. Y., Holbrook, C., Brandt, M., Stein, J., Santiago, J. G., Cooke, J. P., & Blau, H. M. (2015). Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. The FASEB Journal, 29(5), 1930–1939.

https://doi.org/10.1096/fj.14-259531

107. Ranjbar, N., Raeisi, M., Barzegar, M., Ghorbanihaghjo, A., Shiva, S., Sadeghvand, S., Negargar, S., Poursistany, H., & Raeisi, S. (2023). The possible anti-seizure properties of Klotho. Brain Research, 1820, 148555.

https://doi.org/10.1016/j.brainres.2023.148555

108. RATTAN, S. I. (2000). Biogerontology: The next step. Annals of the New York Academy of Sciences, 908(1), 282-290.

https://doi.org/10.1111/j.1749-6632.2000.tb06655.x

109. Rattan, S. I. S. (2018). Biogerontology: research status, challenges and opportunities. Acta Bio Medica : Atenei Parmensis, 89(2), 291–301.

https://doi.org/10.23750/abm.v89i2.7403

110. Renault, V. M., Rafalski, V. A., Morgan, A. A., Salih, D. A., Brett, J. O., Webb, A. E., Villeda, S. A., Thekkat, P. U., Guillerey, C., Denko, N. C., Palmer, T. D., Butte, A. J., & Brunet, A. (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell, 5(5), 527-539.

https://doi.org/10.1016/j.stem.2009.09.014

111. Rogina, B., & Tissenbaum, H. A. (2024). SIRT1, resveratrol and aging. Frontiers in Genetics, 15.

https://doi.org/10.3389/fgene.2024.1393181

112. Sancar, A., Lindsey-Boltz, L. A., Ünsal-Kaçmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73(1), 39-85.

https://doi.org/10.1146/annurev.biochem.73.011303.073723

113. Ros, M., & Carrascosa, J. M. (2020). Current nutritional and pharmacological anti-aging interventions. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(3), 165612.

https://doi.org/10.1016/j.bbadis.2019.165612

114. Saliev, T., & Singh, P. (2025). Age reprogramming: Innovations and ethical considerations for prolonged longevity (Review). Biomedical Reports, 22(6), 1-15.

https://doi.org/10.3892/br.2025.1974

115. Dominguez-Hernandez, E., Salaseviciene, A., & Ertbjerg, P. (2018). Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Science, 143, 104-113.

https://doi.org/10.1016/j.meatsci.2018.04.032

116. Schumacher, B., Pothof, J., Vijg, J., & Hoeijmakers, J. H. (2021). The central role of DNA damage in the aging process. Nature, 592(7856), 695-703.

https://doi.org/10.1038/s41586-021-03307-7

117. Sheon, R. P. (1991). Injuries of the lower extremity, painful lesions, compartment syndrome, and soft tissue calcification. Current Opinion in Rheumatology, 3(2), 203-206.

https://doi.org/10.1097/00002281-199104000-00002

118. Rashid et al., (2025). Aging Anxiety in Pakistani Gen Z: AAS Scores and Perceptions of Genetic Influence. Journal of Health, Wellness and Community Research, e859.

https://doi.org/10.61919/5gxjrh15

119. Zhao, Y., Simon, M., Seluanov, A., & Gorbunova, V. (2022). DNA damage and repair in age-related inflammation. Nature Reviews Immunology, 23(2), 75-89.

https://doi.org/10.1038/s41577-022-00751-y

120. Hubbard, B. P., & Sinclair, D. A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences, 35(3), 146-154.

https://doi.org/10.1016/j.tips.2013.12.004

121. Sun, Z. (2015). Aging, arterial stiffness, and hypertension. Hypertension, 65(2), 252-256.

https://doi.org/10.1161/hypertensionaha.114.03617

122. Sun, Z. (2015). Aging, arterial stiffness, and hypertension. Hypertension, 65(2), 252-256.

https://doi.org/10.1161/hypertensionaha.114.03617

123. Talbourdet, S., Sadick, N. S., Lazou, K., Bonnet-Duquennoy, M., Kurfurst, R., Neveu, M., Heusèle, C., André, P., Schnebert, S., Draelos, Z. D., & Perrier, E. (2007). Modulation of gene expression as a new skin anti-aging strategy. Journal of Drugs in Dermatology: JDD, 6(6 Suppl), s25-33.

https://pubmed.ncbi.nlm.nih.gov/17691207/

124. Tan, S. H., Chua, D. A., Tang, J. R., Bonnard, C., Leavesley, D., & Liang, K. (2022). Design of hydrogel-based scaffolds for in vitro three-dimensional human skin model reconstruction. Acta Biomaterialia, 153, 13-37.

https://doi.org/10.1016/j.actbio.2022.09.068

125. Luen Tang, B. (2016). Sirt1 and the mitochondria. Molecules and Cells, 39(2), 87-95.

https://doi.org/10.14348/molcells.2016.2318

126. Tenchov, R., Sasso, J. M., Wang, X., & Zhou, Q. A. (2024). Antiaging strategies and remedies: A landscape of research progress and promise. ACS Chemical Neuroscience, 15(3), 408-446.

https://doi.org/10.1021/acschemneuro.3c00532

127. Unnikrishnan, A., Freeman, W. M., Jackson, J., Wren, J. D., Porter, H., & Richardson, A. (2019). The role of DNA methylation in epigenetics of aging. Pharmacology & Therapeutics, 195, 172-185.

https://doi.org/10.1016/j.pharmthera.2018.11.001

128. Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To scaffold, or not to scaffold, that is the question. International Journal of Molecular Sciences, 22(23), 12690.

https://doi.org/10.3390/ijms222312690

129. Von Nordheim, F., & Kvist, J. (2022). Regulating the retirement age—Lessons from nordic pension policy approaches. Regulation & Governance, 17(3), 644-657.

https://doi.org/10.1111/rego.12475

130. Walters, H. (2024). Pharmacological TERT activation attenuates phenotypes of natural aging. Nature Aging, 4(7), 904-904.

https://doi.org/10.1038/s43587-024-00673-5

131. Wang, C., Chen, B., Feng, Q., Nie, C., & Li, T. (2020). Clinical perspectives and concerns of metformin as an anti‐aging drug. AGING MEDICINE, 3(4), 266-275.

https://doi.org/10.1002/agm2.12135

132. Wang, S., Madu, C. O., & Lu, Y. (2019). Telomere and its role in diseases. Oncomedicine, 4, 1-9.

https://doi.org/10.7150/oncm.28210

133. Wątroba, M., & Szukiewicz, D. (2016). The role of sirtuins in aging and age-related diseases. Advances in Medical Sciences, 61(1), 52-62.

https://doi.org/10.1016/j.advms.2015.09.003

134. Woo, J., Archard, D., Au, D., Bergstresser, S., Erler, A., Kwok, T., Newman, J., Tong, R., & Walker, T. (2019). Ethical perspectives on advances in biogerontology. AGING MEDICINE, 2(2), 99-103.

https://doi.org/10.1002/agm2.12061

135. Xu, L., Freeman, G., Cowling, B. J., & Schooling, C. M. (2013). Testosterone therapy and cardiovascular events among men: A systematic review and meta-analysis of placebo-controlled randomized trials. BMC Medicine, 11(1).

https://doi.org/10.1186/1741-7015-11-108

136. Yang, W., Hamilton, J. L., Kopil, C., Beck, J. C., Tanner, C. M., Albin, R. L., Ray Dorsey, E., Dahodwala, N., Cintina, I., Hogan, P., & Thompson, T. (2020). Current and projected future economic burden of Parkinson’s disease in the U.S. npj Parkinson's Disease, 6(1).

https://doi.org/10.1038/s41531-020-0117-1

137. Zhang, T., Zhou, L., Makarczyk, M. J., Feng, P., & Zhang, J. (2025). The anti-aging mechanism of metformin: From molecular insights to clinical applications. Molecules, 30(4), 816.

https://doi.org/10.3390/molecules30040816

138. Zhang, W., Zhou, W., Luo, Z., Huang, Y., & Zhang, H. (2024). Anti-aging therapeutics for the musculoskeletal and cardiovascular systems: The role of regular exercise. The Innovation Medicine, 2(3), 100085.

https://doi.org/10.59717/j.xinn-med.2024.100085

Downloads

Published

2025-12-30

Issue

Section

Review Article

How to Cite

Akbar, A., Nawaz , S., Iqbal, Q. M., Ashraf , E., Mazhar, M., & Irum, B. (2025). Advancements and Challenges in Anti-aging Research: Exploring Anti-aging Pathways to Longevity and Disease Prevention. Indus Journal of Bioscience Research, 3(12), 1-17. https://doi.org/10.70749/ijbr.v3i12.2684