Nutraceutical Potential of Strawberries, It’s Phytochemicals and Health Benefits: A Comprehensive Review
DOI:
https://doi.org/10.70749/ijbr.v3i12.2711Keywords:
Strawberry, Phytochemicals, Functional Food, Nutraceutical Components, Health Benefits, Cellular Mechanism, Anti-cancer and Anti-inflammatory.Abstract
Strawberry (Fragaria × ananassa) world widely recognized as a nutrient-dense fruit containing a wide range of bioactive compounds like anthocyanins, flavonoids, ellagitannins and other phenolic compounds that exhibit strong anti-inflammatory and antioxidant properties. Over the past two decades, advances in techniques like chromatography and mass spectrometry have significantly expanded the understanding of the characterization of these compounds among different cultivar types, post-harvest handling, and plant tissues. Experimental evidence from various in vitro and human studies indicates that strawberry phytochemicals are capable of modulating oxidative stress, providing neuroprotection, enhancing endogenous detoxification systems and modulating cognitive and metabolic functions. However, despite all these promising biological effects of strawberry phytochemicals, there remain some uncertainties regarding their metabolic fate, bioavailability and their long-term effects on human health. By synthesizing findings from recent literature, this review highlights the chemical composition, biological effects, and potential health benefits of strawberry consumption either raw or in supplement form or as freeze-dried strawberry powder. This review also emphasizes that, strawberries should be consumed as a whole rather than in supplemental constituents because there are many phytochemicals that provide multiple health benefits despite focusing on a single benefit. While focusing on the need for an analytical approach and more clinical studies in the future.
Downloads
References
Aaby, K., Skrede, G., & Wrolstad, R. E. (2005). Phenolic composition and antioxidant activities in flesh and achenes of strawberries (Fragaria ananassa). Journal of Agricultural and Food Chemistry, 53(10), 4032-4040.
https://doi.org/10.1021/jf048001o
Aaby, K., Wrolstad, R. E., Ekeberg, D., & Skrede, G. (2007). Polyphenol composition and antioxidant activity in strawberry purees; Impact of achene level and storage. Journal of Agricultural and Food Chemistry, 55(13), 5156-5166.
https://doi.org/10.1021/jf070467u
Afzal, M., Redha, A., & AlHasan, R. (2019). Anthocyanins potentially contribute to defense against Alzheimer’s disease. Molecules, 24(23), 4255.
https://doi.org/10.3390/molecules24234255
Andres-Lacueva, C., Shukitt-Hale, B., Galli, R. L., Jauregui, O., Lamuela-Raventos, R. M., & Joseph, J. A. (2005). Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional Neuroscience, 8(2), 111-120.
https://doi.org/10.1080/10284150500078117
Bailey, L. B., & Gregory, J. F. (1999). Folate metabolism and requirements. The Journal of Nutrition, 129(4), 779-782.
https://doi.org/10.1093/jn/129.4.779
Banc, R., Rusu, M. E., Filip, L., & Popa, D. (2023). The impact of Ellagitannins and their metabolites through gut microbiome on the gut health and brain wellness within the gut–brain Axis. Foods, 12(2), 270.
https://doi.org/10.3390/foods12020270
Beekwilder, J., Hall, R. D., & Ric Vos, C. D. (2005). Identification and dietary relevance of antioxidants from raspberry. BioFactors, 23(4), 197-205.
https://doi.org/10.1002/biof.5520230404
Bell, D. R., & Gochenaur, K. (2006). Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. Journal of Applied Physiology, 100(4), 1164-1170.
https://doi.org/10.1152/japplphysiol.00626.2005
Bhagwat, S., Haytowitz, D. B., & Holden, J. M. (2014). USDA database for the flavonoid content of selected foods, Release 3.1. US Department of Agriculture: Beltsville, MD, USA, 324-473.
Bibi, N., Naseer Hashmi, M. A., Naz, F., Mahmood, T., Ikram, R., Muhammad Daood, Muhammad Bilal, Ahmad, M., & Umair Nadeem, H. M. (2025). Modern breeding strategies for the identification of drought tolerance in wheat: A comprehensive review. Indus Journal of Bioscience Research, 3(10), 235-244.
https://doi.org/10.70749/ijbr.v3i10.2532
Chu, Y., Sun, J., Wu, X., & Liu, R. H. (2002). Antioxidant and Antiproliferative activities of common vegetables. Journal of Agricultural and Food Chemistry, 50(23), 6910-6916.
https://doi.org/10.1021/jf020665f
Crowe-White, K. M., Evans, L. W., Kuhnle, G. G., Milenkovic, D., Stote, K., Wallace, T., Handu, D., & Senkus, K. E. (2022). Flavan-3-ols and Cardiometabolic health: First ever dietary Bioactive guideline. Advances in Nutrition, 13(6), 2070-2083.
https://doi.org/10.1093/advances/nmac105
Edirisinghe, I., Banaszewski, K., Cappozzo, J., Sandhya, K., Ellis, C. L., Tadapaneni, R., Kappagoda, C. T., & Burton-Freeman, B. M. (2011). Strawberry anthocyanin and its association with postprandial inflammation and insulin. British Journal of Nutrition, 106(6), 913-922.
https://doi.org/10.1017/s0007114511001176
Food and Agriculture Organization (FAO). (2023). FAOSTAT—Crops and livestock products.
https://www.fao.org/faostat/en/#data/QCL
D'Urso, G., Maldini, M., Pintore, G., D'Aquino, L., Montoro, P., & Pizza, C. (2016). Characterisation of fragaria vesca fruit from Italy following a metabolomics approach through integrated mass spectrometry techniques. LWT, 74, 387-395.
https://doi.org/10.1016/j.lwt.2016.07.061
Sammarco, G., Gallo, G., Vescio, G., Picciariello, A., De Paola, G., Trompetto, M., Currò, G., & Ammendola, M. (2020). Mast cells, microRNAs and others: The role of translational research on colorectal cancer in the forthcoming era of precision medicine. Journal of Clinical Medicine, 9(9), 2852.
https://doi.org/10.3390/jcm9092852
Miller, M. G., Thangthaeng, N., Rutledge, G. A., Scott, T. M., & Shukitt-Hale, B. (2021). Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. British Journal of Nutrition, 126(2), 253-263.
https://doi.org/10.1017/s0007114521000222
Gao, Q., Dong, J., Cui, R., Muraki, I., Yamagishi, K., Sawada, N., Iso, H., & Tsugane, S. (2021). Consumption of flavonoid-rich fruits, flavonoids from fruits and stroke risk: A prospective cohort study. British Journal of Nutrition, 126(11), 1717-1724.
https://doi.org/10.1017/s0007114521000404
Giampieri, F., Alvarez-Suarez, J., Mazzoni, L., Forbes-Hernandez, T., Gasparrini, M., Gonzàlez-Paramàs, A., Santos-Buelga, C., Quiles, J., Bompadre, S., Mezzetti, B., & Battino, M. (2014). Polyphenol-rich strawberry extract protects human dermal fibroblasts against hydrogen peroxide oxidative damage and improves mitochondrial functionality. Molecules, 19(6), 7798-7816.
https://doi.org/10.3390/molecules19067798
Wang, H., Oo Khor, T., Shu, L., Su, Z., Fuentes, F., Lee, J., & Tony Kong, A. (2012). Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their Druggability. Anti-Cancer Agents in Medicinal Chemistry, 12(10), 1281-1305.
https://doi.org/10.2174/187152012803833026
Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950-988.
https://doi.org/10.3390/i8090950
Heo, H. J., & Lee, C. Y. (2005). Strawberry and its anthocyanins reduce oxidative stress-induced Apoptosis in PC12 cells. Journal of Agricultural and Food Chemistry, 53(6), 1984-1989.
https://doi.org/10.1021/jf048616l
Hollands, W., Brett, G. M., Dainty, J. R., Teucher, B., & Kroon, P. A. (2008). Urinary excretion of strawberry anthocyanins is dose dependent for physiological oral doses of fresh fruit. Molecular Nutrition & Food Research, 52(10), 1097-1105.
https://doi.org/10.1002/mnfr.200700372
Holt, R. R., Barile, D., Wang, S. C., Munafo, J. P., Arvik, T., Li, X., Lee, F., Keen, C. L., Tagkopoulos, I., & Schmitz, H. H. (2022). Chardonnay Marc as a new model for Upcycled Co-products in the food industry: Concentration of diverse natural products chemistry for consumer health and sensory benefits. Journal of Agricultural and Food Chemistry, 70(48), 15007-15027.
https://doi.org/10.1021/acs.jafc.2c04519
Huang, L., Xiao, D., Zhang, X., Sandhu, A. K., Chandra, P., Kay, C., Edirisinghe, I., & Burton-Freeman, B. (2021). Strawberry consumption, Cardiometabolic risk factors, and vascular function: A randomized controlled trial in adults with moderate Hypercholesterolemia. The Journal of Nutrition, 151(6), 1517-1526.
https://doi.org/10.1093/jn/nxab034
Ivey, K. L., Jensen, M. K., Hodgson, J. M., Eliassen, A. H., Cassidy, A., & Rimm, E. B. (2017). Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. British Journal of Nutrition, 117(10), 1470-1477.
https://doi.org/10.1017/s0007114517001325
MILIVOJEVIĆ, J., MAKSIMOVIĆ, V., NIKOLIĆ, M., BOGDANOVIĆ, J., MALETIĆ, R., & MILATOVIĆ, D. (2011). Chemical and Antioxidant Properties of Cultivated and Wild Fragaria and Rubus Berries. Journal of Food Quality, 34(1), 1-9.
https://doi.org/10.1111/j.1745-4557.2010.00360.x
Vanamala, J., Tarver, C., & Murano, P. (2008). Obesity-enhanced colon cancer: Functional food compounds and their mechanisms of action. Current Cancer Drug Targets, 8(7), 611-633.
https://doi.org/10.2174/156800908786241087
Jacob, R. A., Spinozzi, G. M., Simon, V. A., Kelley, D. S., Prior, R. L., Hess-Pierce, B., & Kader, A. A. (2003). Consumption of cherries lowers plasma urate in healthy women. The Journal of Nutrition, 133(6), 1826-1829.
https://doi.org/10.1093/jn/133.6.1826
Karlińska, E., Masny, A., Cieślak, M., Macierzyński, J., Pecio, Ł., Stochmal, A., & Kosmala, M. (2021). Ellagitannins in roots, leaves, and fruits of strawberry (Fragaria × ananassa Duch.) vary with developmental stage and cultivar. Scientia Horticulturae, 275, 109665.
https://doi.org/10.1016/j.scienta.2020.109665
Kellner, C., & Zunino, S. J. (2004). Nitric oxide is synthesized in acute leukemia cells after exposure to phenolic antioxidants and initially protects against mitochondrial membrane depolarization. Cancer Letters, 215(1), 43-52.
https://doi.org/10.1016/j.canlet.2004.06.046
Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M. T., & Vasantha Rupasinghe, H. (2008). Polyphenol composition and total antioxidant capacity of selected Apple genotypes for processing. Journal of Food Composition and Analysis, 21(5), 396-401.
https://doi.org/10.1016/j.jfca.2008.03.004
Krga, I., & Milenkovic, D. (2019). Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. Journal of Agricultural and Food Chemistry, 67(7), 1771-1783.
https://doi.org/10.1021/acs.jafc.8b06737
Krikorian, R., Shidler, M., & Summer, S. (2023). Early intervention in cognitive aging with strawberry supplementation. Nutrients, 15(20), 4431.
https://doi.org/10.3390/nu15204431
Kwon, C., Ediriweera, M. K., & Kim Cho, S. (2023). Interplay between phytochemicals and the colonic microbiota. Nutrients, 15(8), 1989.
https://doi.org/10.3390/nu15081989
Lee, S., Choi, Y., Sung, J., Kim, Y., Jeong, H., & Lee, J. (2014). Protective effects of Black rice extracts on oxidative stress induced by tert-butyl Hydroperoxide in HepG2 cells. Preventive Nutrition and Food Science, 19(4), 348-352.
https://doi.org/10.3746/pnf.2014.19.4.348
Li, D., Wang, P., Luo, Y., Zhao, M., & Chen, F. (2015). Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition, 57(8), 1729-1741.
https://doi.org/10.1080/10408398.2015.1030064
Määttä-Riihinen, K. R., Kamal-Eldin, A., & Törrönen, A. R. (2004). Identification and quantification of phenolic compounds in berries ofFragariaandRubusSpecies (Family rosaceae). Journal of Agricultural and Food Chemistry, 52(20), 6178-6187.
https://doi.org/10.1021/jf049450r
Mazur, W. M., Uehara, M., Wähälä, K., & Adlercreutz, H. (2000). Phyto-oestrogen content of berries, and plasma concentrationsand urinary excretion of enterolactone after asingle strawberry-meal in human subjects. British journal of nutrition, 83(4), 381-387.
https://doi.org/10.1017/S0007114500000489
Miller, J. C., Satheesh Babu, A. K., Petersen, C., Wankhade, U. D., Robeson, M. S., Putich, M. N., Mueller, J. E., O'Farrell, A. S., Cho, J. M., Chintapalli, S. V., Jalili, T., Symons, J. D., & Anandh Babu, P. V. (2022). Back cover: Gut microbes are associated with the vascular beneficial effects of dietary strawberry on metabolic syndrome‐induced vascular inflammation. Molecular Nutrition & Food Research, 66(22).
https://doi.org/10.1002/mnfr.202270062
Nickel, T., Schmauss, D., Hanssen, H., Sicic, Z., Krebs, B., Jankl, S., Summo, C., Fraunberger, P., Walli, A. K., Pfeiler, S., & Weis, M. (2009). OxLDL uptake by dendritic cells induces upregulation of scavenger-receptors, maturation and differentiation. Atherosclerosis, 205(2), 442-450.
https://doi.org/10.1016/j.atherosclerosis.2009.01.002
Nowicka, A., Kucharska, A. Z., Sokół-Łętowska, A., & Fecka, I. (2019). Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch. Food Chemistry, 270, 32-46.
https://doi.org/10.1016/j.foodchem.2018.07.015
Oyewole, A. O., Wilmot, M., Fowler, M., & Birch‐Machin, M. A. (2013). Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide. The FASEB Journal, 28(1), 485-494.
https://doi.org/10.1096/fj.13-237008
Palacios, C., Joshipura, K., & Willett, W. (2009). Nutrition and health: Guidelines for dental practitioners. Oral Diseases, 15(6), 369-381.
https://doi.org/10.1111/j.1601-0825.2009.01571.x
Rahman, M., Rahman, M., & Islam, T. (2019). Improving yield and antioxidant properties of strawberries by utilizing microbes and natural products. Strawberry - Pre- and Post-Harvest Management Techniques for Higher Fruit Quality.
https://doi.org/10.5772/intechopen.84803
Raman, G., Avendano, E. E., Chen, S., Wang, J., Matson, J., Gayer, B., Novotny, J. A., & Cassidy, A. (2019). Dietary intakes of flavan-3-ols and cardiometabolic health: Systematic review and meta-analysis of randomized trials and prospective cohort studies. The American Journal of Clinical Nutrition, 110(5), 1067-1078.
https://doi.org/10.1093/ajcn/nqz178
Rodriguez-Mateos, A., Istas, G., Boschek, L., Feliciano, R. P., Mills, C. E., Boby, C., ... & Heiss, C. (2019). Circulating anthocyanin metabolites mediate vascular benefits of blueberries: insights from randomized controlled trials, metabolomics, and nutrigenomics. The Journals of Gerontology: Series A, 74(7), 967-976.
https://doi.org/10.1093/gerona/glz047
Rothwell, J. A., Perez-Jimenez, J., Neveu, V., Medina-Remon, A., M'hiri, N., García-Lobato, P., ... & Scalbert, A. (2013). Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 2013.
https://doi.org/10.1093/database/bat070
Rudkowska, I., AbuMweis, S. S., Nicolle, C., & Jones, P. J. (2008). Cholesterol-lowering efficacy of plant sterols in low-fat yogurt consumed as a snack or with a meal. Journal of the American College of Nutrition, 27(5), 588-595.
https://doi.org/10.1080/07315724.2008.10719742
Satheesh Babu, A. K., Srinivasan, H., & Anandh Babu, P. V. (2023). Breaking bugs: Gut microbes metabolize dietary components and modulate vascular health. Critical Reviews in Food Science and Nutrition, 64(33), 12411-12419.
https://doi.org/10.1080/10408398.2023.2251616
Seeram, N. P. (2008). Berry fruits for cancer prevention: Current status and future prospects. Journal of Agricultural and Food Chemistry, 56(3), 630-635.
https://doi.org/10.1021/jf072504n
Seeram, N. P., Lee, R., Scheuller, H. S., & Heber, D. (2006). Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chemistry, 97(1), 1-11.
https://doi.org/10.1016/j.foodchem.2005.02.047
Seeram, N. P., Adams, L. S., Zhang, Y., Lee, R., Sand, D., Scheuller, H. S., & Heber, D. (2006). BlackBerry, Black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate Apoptosis of human cancer cells in vitro. Journal of Agricultural and Food Chemistry, 54(25), 9329-9339.
https://doi.org/10.1021/jf061750g
Seeram, N. P., Lee, R., Scheuller, H. S., & Heber, D. (2006). Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chemistry, 97(1), 1-11.
https://doi.org/10.1016/j.foodchem.2005.02.047
Seki, H., Ma, T., Murakami, H., Tsuchikawa, S., & Inagaki, T. (2023). Visualization of sugar content distribution of white strawberry by near-infrared hyperspectral imaging. Foods, 12(5), 931.
https://doi.org/10.3390/foods12050931
Shukitt-Hale, B., Carey, A. N., Jenkins, D., Rabin, B. M., & Joseph, J. A. (2007). Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging. Neurobiology of Aging, 28(8), 1187-1194.
https://doi.org/10.1016/j.neurobiolaging.2006.05.031
Shukitt-Hale, B., Lau, F. C., & Joseph, J. A. (2008). Berry fruit supplementation and the aging brain. Journal of Agricultural and Food Chemistry, 56(3), 636-641.
https://doi.org/10.1021/jf072505f
Šic Žlabur, J., Bogdanović, S., Voća, S., & Skendrović Babojelić, M. (2020). Biological potential of fruit and leaves of strawberry tree (Arbutus unedo L.) from Croatia. Molecules, 25(21), 5102.
https://doi.org/10.3390/molecules25215102
Stapleton, P. A., James, M. E., Goodwill, A. G., & Frisbee, J. C. (2008). Obesity and vascular dysfunction. Pathophysiology, 15(2), 79-89.
https://doi.org/10.1016/j.pathophys.2008.04.007
Stoner, G. D. (2009). Foodstuffs for preventing cancer: The preclinical and clinical development of berries. Cancer Prevention Research, 2(3), 187-194.
https://doi.org/10.1158/1940-6207.capr-08-0226
Tang, W. W., Bäckhed, F., Landmesser, U., & Hazen, S. L. (2019). Intestinal microbiota in cardiovascular health and disease. Journal of the American College of Cardiology, 73(16), 2089-2105.
https://doi.org/10.1016/j.jacc.2019.03.024
Törrönen, R., & Määttä, K. (2002). Bioactive substances and health benefits of strawberries. Acta Horticulturae, (567), 797-803.
https://doi.org/10.17660/actahortic.2002.567.176
Tsuda, T. (2008). Regulation of Adipocyte function by anthocyanins; Possibility of preventing the metabolic syndrome. Journal of Agricultural and Food Chemistry, 56(3), 642-646.
https://doi.org/10.1021/jf073113b
Ubago-Guisado, E., Rodríguez-Barranco, M., Ching-López, A., Petrova, D., Molina-Montes, E., Amiano, P., Barricarte-Gurrea, A., Chirlaque, M., Agudo, A., & Sánchez, M. (2021). Evidence update on the relationship between diet and the most common cancers from the European prospective investigation into cancer and nutrition (EPIC) study: A systematic review. Nutrients, 13(10), 3582.
https://doi.org/10.3390/nu13103582
USDA. 2016. USDA national nutrient database for standard reference, Release 28.
https://www.ars.usda.gov/Services/docs.htm?docid=8964
Vattem, D. A., Lin, Y., & Shetty, K. (2005). Enrichment of phenolic antioxidants and anti-helicobacter pyloriProperties of cranberry pomace by solid-state Bioprocessing. Food Biotechnology, 19(1), 51-68.
https://doi.org/10.1081/fbt-200049065
Wang, L., & Stoner, G. D. (2008). Anthocyanins and their role in cancer prevention. Cancer Letters, 269(2), 281-290.
https://doi.org/10.1016/j.canlet.2008.05.020
Wang, S. Y., & Lin, H. (2000). Antioxidant activity in fruits and leaves of BlackBerry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140-146.
https://doi.org/10.1021/jf9908345
Warner, R., Wu, B.-S., MacPherson, S., & Lefsrud, M. (2021). A review of strawberry photobiology and fruit flavonoids in controlled environments. Frontiers in Plant Science, 12, 611893.
https://doi.org/10.3389/fpls.2021.611893
Prior, R. L., Wu, X., & Cao, G. (2002). Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. The Journal of Nutrition, 132(7), 1865-1871.
https://doi.org/10.1093/jn/132.7.1865
Yang, Y., Dong, J.-Y., Cui, R., Muraki, I., Yamagishi, K., Sawada, N., Iso, H., Tsugane, S., & Group, for the J. P. H. C. P. S. (2020). Consumption of flavonoid-rich fruits and risk of CHD: a prospective cohort study. British Journal of Nutrition, 124(9), 1–8.
https://doi.org/10.1017/S0007114520001993
Zhang, H., Cha, S., & Yeung, E. S. (2007). Colloidal graphite-assisted laser desorption/ionization ms and ms(n) of small molecules. 2. Direct profiling and ms imaging of small metabolites from fruits. Analytical Chemistry, 79(17), 6575-6584.
https://doi.org/10.1021/ac0706170
Zhang, Y., Seeram, N. P., Lee, R., Feng, L., & Heber, D. (2008). Isolation and identification of strawberry phenolics with antioxidant and human cancer cell Antiproliferative properties. Journal of Agricultural and Food Chemistry, 56(3), 670-675.
https://doi.org/10.1021/jf071989c
Zhang, Y., Seeram, N. P., Lee, R., Feng, L., & Heber, D. (2008). Isolation and identification of strawberry phenolics with antioxidant and human cancer cell Antiproliferative properties. Journal of Agricultural and Food Chemistry, 56(3), 670-675.
https://doi.org/10.1021/jf071989c
Zuelch, M. L., Radtke, M. D., Holt, R. R., Basu, A., Burton-Freeman, B., Ferruzzi, M. G., Li, Z., Shay, N. F., Shukitt-Hale, B., Keen, C. L., et al. (2023). Perspective: Challenges and future directions in clinical research with nuts and berries. Advances in Nutrition, 14(5), 1005–1028.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.