Application of UV-Visible Spectroscopy in the Quantitative Determination and Characterization of Organic Compounds

Authors

  • Waqas Ahmed Khan Department of Chemical Engineering, University of Wah, Quaid Avenue, Wah Cantt, Pakistan
  • Farah Alvi Department, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
  • Shahbaz Hassan Mansoor Laboratory Chemist, Aqua Regia Private Limited, Lahore, Pakistan
  • Fatima Jabeen Department of Chemistry, University of Education Lahore, Faisalabad Campus, Faisalabad, Pakistan
  • Muhammad Ahsan Bashir Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
  • Malik Sohaib Sultan Department of Chemistry, University of Education Lahore, Faisalabad Campus, Faisalabad, Pakistan

DOI:

https://doi.org/10.70749/ijbr.v4i1.2860

Keywords:

UV-Visible Spectroscopy, Quantitative Analysis, Organic Compounds, Calibration Curve, λmax, Beer–Lambert Law, Precision and Accuracy, Structural Characterization

Abstract

This study investigates the application of UV-Visible spectroscopy for the quantitative determination and characterization of organic compounds. Standard solutions of a model organic compound (2–10 µg/mL) were analyzed, producing a calibration curve with excellent linearity (R² = 0.999) and adherence to the Beer–Lambert law. Sample analysis revealed a concentration of 5.9 µg/mL from a measured absorbance of 0.365, confirming the accuracy and reliability of the method. Spectral characterization showed λmax values at 268 nm, corresponding to π → π* electronic transitions, and solvent polarity and substituent effects caused bathochromic and hypsochromic shifts, reflecting structural sensitivity. Method validation demonstrated high precision (%RSD = 1.2%), accuracy (recovery 98–102%), and repeatability, highlighting the robustness of UV-Visible spectroscopy for analytical and quality control applications. Overall, the study underscores the versatility, rapidity, and cost-effectiveness of UV-Visible spectroscopy in research and industrial contexts.

Downloads

Download data is not yet available.

References

1. Mohammed, A. M. (2018). UV-Visible spectrophotometric method and validation of organic compounds. European Journal of Engineering and Technology Research, 3(3), 8-11.

https://doi.org/10.24018/ejeng.2018.3.3.622

2. Ghosh, S., & Nandi, S. (2024). A Comprehensive Review on UV-Visible Spectroscopy and Its application. Int. J. All Res. Education Sci. Methods, 12, 1501-1507.

https://doi.org/10.47583/ijpsrr.2024.v84i03.020

3. Mandru, A., Mane, J., & Mandapati, R. (2023). A Review on UV-visible spectroscopy. Journal of Pharma Insights and Research, 1(2), 091-096.

4. Passos, M. L., & Saraiva, M. L. M. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement, 135, 896-904.

https://doi.org/10.1016/j.measurement.2018.12.045

5. Fuentes, M., González-Gaitano, G., & García-Mina, J. M. (2006). The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry, 37(12), 1949-1959.

https://doi.org/10.1016/j.orggeochem.2006.07.024

6. Zhu, Y., Song, Y., Yu, H., Liu, R., Liu, L., & Lv, C. (2017). Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis. Environmental monitoring and assessment, 189(9), 443.

https://doi.org/10.1007/s10661-017-6150-9

7. Kiss, K., Szalai, Z., Jakab, G., Madarász, B., & Zboray, N. (2014). Characterization of soil organic substances by UV-Vis spectrophotometry in some soils of hungary. In Soil Carbon (pp. 127-136). Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-319-04084-4_13

8. Thummala, S. (2015). Characterization of organic semiconductors using UV-visible spectroscopy (Master's thesis, Texas A&M University-Kingsville).

9. Ferree, M. A., & Shannon, R. D. (2001). Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water research, 35(1), 327-332.

https://doi.org/10.1016/s0043-1354(00)00222-0

10. Liauw, M. A., Baylor, L. C., & O'Rourke, P. E. (2010). UV‐Visible Spectroscopy for On‐Line Analysis. Process analytical technology: Spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries, 81-106.

https://doi.org/10.1002/9780470689592.ch4

11. Parmar, A., & Sharma, S. (2016). Derivative UV-vis absorption spectra as an invigorated spectrophotometric method for spectral resolution and quantitative analysis: Theoretical aspects and analytical applications: A review. TrAC Trends in Analytical Chemistry, 77, 44-53.

https://doi.org/10.1016/j.trac.2015.12.004

12. Saleem, S. M., Naqvi, S. A. R., Janjua, M. R. S. A., Sherazi, T. A., Saeed, M., Hassan, S. U., ... & Jabbar, T. (2025). UV–Visible Spectroscopy for Quantitative Analysis of Biomolecules. Bioanalytical Techniques: Principles and Applications, 79-117.

https://doi.org/10.1002/9781394314133.ch3

13. Saleem, S. M., Naqvi, S. A. R., Janjua, M. R. S. A., Sherazi, T. A., Saeed, M., Hassan, S. U., & Jabbar, T. (2025). UV–Visible Spectroscopy for Quantitative Analysis of Biomolecules. Bioanalytical Techniques: Principles and Applications, 79-117.

https://doi.org/10.1002/9781394314133.ch3

14. Li, P., & Hur, J. (2017). Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Critical Reviews in Environmental Science and Technology, 47(3), 131-154.

15. Kaur, G., Singh, H., & Singh, J. (2021). UV-vis spectrophotometry for environmental and industrial analysis. In Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 49-68). Elsevier.

https://doi.org/10.1016/b978-0-12-821883-9.00004-7

16. Martin‐Neto, L., Milori, D. M. B. P., Da Silva, W. T. L., & Simões, M. L. (2009). EPR, FTIR, Raman, UV–Visible absorption, and fluorescence spectroscopies in studies of NOM. Biophysico‐Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, 651-727.

https://doi.org/10.1002/9780470494950.ch16

17. Nemeş, N. S., & Negrea, A. (2023). Infrared and Visible Spectroscopy: Fourier Transform Infrared Spectroscopy and Ultraviolet–Visible Spectroscopy. Microbial Electrochemical Technologies: Fundamentals and Applications, 1, 163-200.

18. Nkansah, K., Adedipe, O., Dawson-Andoh, B., Atta-Obeng, E., Slahor, J., & Osborn, L. (2015). Determination of concentration of ACQ wood preservative components by UV-Visible spectroscopy coupled with multivariate data analysis. Chemometrics and Intelligent Laboratory Systems, 147, 157-166.

https://doi.org/10.1016/j.chemolab.2015.07.013

19. Alaboodi, A. S., Kadhim, S. A., & Hussein, A. S. (2025). Ultraviolet-Visible Spectroscopy, Importance, Principle, Structure and Most Important Applications: A Study Review. Int. J. Nov. Res. Phys. Chem. Math, 12, 53-60.

20. Minor, E. C., Dalzell, B. J., Stubbins, A., & Mopper, K. (2007). Evaluating the photoalteration of estuarine dissolved organic matter using direct temperature-resolved mass spectrometry and UV-visible spectroscopy. Aquatic Sciences, 69(4), 440-455.

https://doi.org/10.1007/s00027-007-0897-y

21. Shami, S. H., Hassan, A. M., Razzaq, A. L., Hashim, R. M., Khalaf, T. A., Shaheen, K. M., ... & Lateef, E. H. (2024). UV-visible, Infrared, Fourier transform infrared and Raman spectroscopy, spectrophotometry: Principles and Applications. Current Clinical and Medical Education, 2(05), 116-124.

22. Bonfilio, R. B. D. A. M., De Araujo, M. B., & Salgado, H. R. N. (2010). Recent applications of analytical techniques for quantitative pharmaceutical analysis: A review. WSEAS Trans. Biol. Biomed, 7(4), 316.

https://doi.org/10.1097/ftd.0b013e3181eea55a

23. Chen, X., Zhu, W., Zhao, N., Yin, G., Jia, R., Yang, R., ... & Zheng, J. (2025). Fast Tracking and Detection of Organic Matter in an Urban Sewage Treatment Plant Using Fluorescence Spectroscopy and UV-Vis Absorption Spectroscopy. Journal of Applied Spectroscopy, 1-13.

https://doi.org/10.21203/rs.3.rs-4130393/v1

24. Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environmental science: processes & impacts, 16(9), 2064-2079.

https://doi.org/10.1039/c4em00062e

25. Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environmental science: processes & impacts, 16(9), 2064-2079.

https://doi.org/10.1039/c4em00062e

26. Manjuladevi, M., & Kalaiselvan, S. (2022). Applications of UV-Visible and FT-IR spectral analysis in effluent treatment. OMICS International, ebooks.

27. Manjuladevi, M., & Kalaiselvan, S. (2022). Applications of UV-Visible and FT-IR spectral analysis in effluent treatment. OMICS International, ebooks.

28. Akash, M. S. H., & Rehman, K. (2025). Comprehensive Insights into UV-VIS Spectrophotometry. In Essentials of Pharmaceutical Analysis (pp. 95-160). Singapore: Springer Nature Singapore.

https://doi.org/10.1007/978-981-96-5996-8_3

29. Kamberi, M., & Tran, T. N. (2012). UV–visible spectroscopy as an alternative to liquid chromatography for determination of everolimus in surfactant-containing dissolution media: A useful approach based on solid-phase extraction. Journal of pharmaceutical and biomedical analysis, 70, 94-100.

https://doi.org/10.1016/j.jpba.2012.05.038

30. Farrukh, A., Shaaban, I. A., Assiri, M. A., Tahir, M. H., & El-Bahy, Z. M. (2025). UV/visible absorption maxima prediction of water-soluble organic compounds and generation of library of new organic compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 328, 125453.

https://doi.org/10.1016/j.saa.2024.125453

31. Mohamed, M. H., Wilson, L. D., Headley, J. V., & Peru, K. M. (2008). Screening of oil sands naphthenic acids by UV-Vis absorption and fluorescence emission spectrophotometry. Journal of Environmental Science and Health Part A, 43(14), 1700-1705.

https://doi.org/10.1080/10934520802330255

32. Mehdizadeh, P., Jamdar, M., Mahdi, M. A., Abdulsahib, W. K., Jasim, L. S., Yousefi, S. R., & Salavati-Niasari, M. (2023). Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arabian Journal of Chemistry, 16(4), 104579.

https://doi.org/10.1016/j.arabjc.2023.104579

33. Kafle, B. P. (2019). Chemical analysis and material characterization by spectrophotometry. Elsevier.

https://doi.org/10.1016/b978-0-12-814866-2.00001-4

34. Frimmel, F. H. (1998). Characterization of natural organic matter as major constituents in aquatic systems. Journal of Contaminant Hydrology, 35(1-3), 201-216.

https://doi.org/10.1016/s0169-7722(98)00133-8

35. Fuentes, M., Baigorri, R., González-Gaitano, G., & García-Mina, J. M. (2018). New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. Journal of Soils and Sediments, 18(4), 1389-1399.

https://doi.org/10.1007/s11368-016-1514-2

36. Schnitzer, M. (1982). Organic matter characterization. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 581-594.

https://doi.org/10.2134/agronmonogr9.2.2ed.c30

37. Geană, E. I., Ciucure, C. T., Apetrei, C., & Artem, V. (2019). Application of spectroscopic UV-Vis and FT-IR screening techniques coupled with multivariate statistical analysis for red wine authentication: Varietal and vintage year discrimination. Molecules, 24(22), 4166.

https://doi.org/10.3390/molecules24224166

38. Maizel, A. C., & Remucal, C. K. (2017). Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter. Environmental science & technology, 51(4), 2113-2123.

https://doi.org/10.1021/acs.est.6b05140

Downloads

Published

2026-01-30

How to Cite

Khan, W. A., Alvi, F., Mansoor, S. H., Jabeen, F., Bashir, M. A., & Sultan, M. S. (2026). Application of UV-Visible Spectroscopy in the Quantitative Determination and Characterization of Organic Compounds. Indus Journal of Bioscience Research, 4(1), 112-117. https://doi.org/10.70749/ijbr.v4i1.2860