Isolation and Identification of Bacillus Subtilis and Pseudomonas Fluorescens from Wheat Rhizosphere and Their Use as Biocontrol Agents

Authors

  • Ibrar Wali Department of Microbiology, The University of Haripur, KP, Pakistan.
  • Syeda Asma Bano Department of Microbiology, The University of Haripur, KP, Pakistan.
  • Sobia Nisa Department of Microbiology, The University of Haripur, KP, Pakistan.
  • Bushra Uzair Department of Biological Sciences, International Islamic University, Islamabad, Pakistan.
  • Touseef Bashir Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, KP, Pakistan.
  • Muhammad Israr Department of Medical Laboratory Technology, University of Haripur, KP, Pakistan.
  • Muzamil Haider Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, KP, Pakistan.
  • Zia Ur Rehman Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, KP, Pakistan.
  • Adnan Hussain Department of Microbiology, The University of Haripur, KP, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v2i02.295

Keywords:

Biocontrol Agents, Soil Microbes, Bacillus Subtilis and Pseudomonas Fluorescens

Abstract

Some bacteria may be used as biocontrol agents against fungal pathogens. Biocontrol agents are environment friendly and cost effective for controlling different plant pathogens. Fungal plant pathogens cause detrimental effects on plants causing diseases and yield loss. The bacterial strains Pseudomonas fluorescens and Bacillus subtilis live abundantly in rhizospheric soil and have antagonistic activity against other organisms. The objective of present study was to isolate and identify the Pseudomonas fluorescens and Bacillus subtilis from rhizospheric soil of Triticum aestivum and their use as biocontrol agents against Fusarium oxysporum and Botrytis cinerea. The culture method, microscopic analysis and biochemical methods were used for initially screening of bacteria strain found in rhizospheric soil of Triticum aestivum. The biochemical and molecular tests resulted in the identification of Pseudomonas fluorescens and Bacillus from rhizospheric soil of Triticum aestivum. 16s rRNA sequence analysis confirmed the presence of Bacillus subtilis and Pseudomonas fluorescens. Biocontrol activities of Pseudomonas fluorescens and Bacillus were visualized on potato dextrose agar “PDA” + 0.5% yeast extract plate. Bacillus subtilis showed the maximum biocontrol activity against Fusarium oxysporum and Botrytis cinerea. Pseudomonas fluorescens showed activity against Fusarium oxysporum but did not show any activity against Botrytis cinerea. Bacillus subtilis and Pseudomonas fluorescens inhibited the development of plant pathogenic fungi Fusarium oxysporum and Botrytis cinerea. Bacillus subtilis and Pseudomonas fluorescens may be used as biofertilizer and biopesticides.

Downloads

Download data is not yet available.

References

Abbas, A., Khan, S. U., Khan, W. U., Saleh, T. A., Khan, M. H., Ullah, S., Ali, A., & Ikram, M. (2019). Antagonist effects of strains of bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. Comptes Rendus. Biologies, 342(5-6), 124-135. https://doi.org/10.1016/j.crvi.2019.05.002

AJILOGBA, C. F., & BABALOLA, O. O. (2013). Integrated management strategies for tomato Fusarium wilt. Biocontrol Science, 18(3), 117-127. https://doi.org/10.4265/bio.18.117

Ali, A., Khalid, R., Ali, S., Akram, Z., & Hayat, R. (2015). Characterization of plant growth promoting Rhizobacteria isolated from chickpea (Cicer arietinum). British Microbiology Research Journal, 6(1), 32-40. https://doi.org/10.9734/bmrj/2015/14496

Bailey, A. S., Bertaglia, M., Fraser, I. M., Sharma, A., & Douarin, E. (2009). Integrated pest management portfolios in UK arable farming: Results of a farmer survey. Pest Management Science, 65(9), 1030-1039. https://doi.org/10.1002/ps.1790

Bajwa, W. I., & Kogan, M. (2004). Cultural practices: Springboard to IPM. Integrated pest management: potential, constraints and challenges, 21-38. https://doi.org/10.1079/9780851996868.0021

Barghouthi, S. A. (2011). A universal method for the identification of bacteria based on general PCR primers. Indian Journal of Microbiology, 51(4), 430-444. https://doi.org/10.1007/s12088-011-0122-5

Barzman, M., Bàrberi, P., Birch, A. N., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A., Ratnadass, A., Ricci, P., Sarah, J., & Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 1199-1215. https://doi.org/10.1007/s13593-015-0327-9

Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. https://doi.org/10.1007/s00253-009-2092-7

Bielza, P., Quinto, V., Contreras, J., Torné, M., Martín, A., & Espinosa, P. J. (2007). Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south‐eastern Spain. Pest Management Science, 63(7), 682-687. https://doi.org/10.1002/ps.1388

Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987-1998. https://doi.org/10.1098/rstb.2010.0390

Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987-1998. https://doi.org/10.1098/rstb.2010.0390

Chandler, D., Davidson, G., & Jacobson, R. J. (2005). Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite,Tetranychus urticae(Acari: Tetranychidae), on tomato,Lycopersicon esculentum. Biocontrol Science and Technology, 15(1), 37-54. https://doi.org/10.1080/09583150410001720617

Chaurasia, P. K., & Bharati, S. L. (2021). Applicability of fungi in agriculture and environmental sustainability. Microbes in Land Use Change Management, 155-172. https://doi.org/10.1016/b978-0-12-824448-7.00010-3

Chen, Q., Qiu, Y., Yuan, Y., Wang, K., & Wang, H. (2022). Biocontrol activity and action mechanism of bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.994716

Choudhary, D. K., & Johri, B. N. (2009). Interactions of bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493-513. https://doi.org/10.1016/j.micres.2008.08.007

Delany, I., Sheehan, M. M., Fenton, A., Bardin, S., Aarons, S., & O’Gara, F. (2000). Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in pseudomonas fluorescens F113: Genetic analysis of phlF as a transcriptional repressor the GenBank accession number for the sequence reported in this paper is AF129856. Microbiology, 146(2), 537-546. https://doi.org/10.1099/00221287-146-2-537

Derpsch, R., Franzluebbers, A., Duiker, S., Reicosky, D., Koeller, K., Friedrich, T., Sturny, W., Sá, J., & Weiss, K. (2014). Why do we need to standardize no-tillage research? Soil and Tillage Research, 137, 16-22. https://doi.org/10.1016/j.still.2013.10.002

Directorate, P. S. J. Y., UK: Pesticides Safety Directorate. See http://www. pesticides. gov. uk/environment. asp (2008) 'Plant protection products regulation: agronomic implications of proposals in the EU'.

Doornbos, R. F., Van Loon, L. C., & Bakker, P. A. (2011). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227-243. https://doi.org/10.1007/s13593-011-0028-y

Dubey, A., Kumar, A., Abd_Allah, E. F., Hashem, A., & Khan, M. L. (2019). Growing more with less: Breeding and developing drought resilient soybean to improve food security. Ecological Indicators, 105, 425-437. https://doi.org/10.1016/j.ecolind.2018.03.003

Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237-256. https://doi.org/10.1016/j.biocontrol.2007.08.001

Flint, M. L. and Van den Bosch, R. (2012) Introduction to integrated pest management. Springer Science & Business Media.

FOOD FUTURE. Available at: https://agritrop.cirad.fr/593176/1/WRR_Food_Full_Report_0.pdf

Githae, E. W., & Kuria, E. K. (2021). Biological control of desert locust ( Schistocerca gregaria Forskål). CABI Reviews. https://doi.org/10.1079/pavsnnr202116013

Hajek, A. E. and Eilenberg, J. (2018) Natural enemies: an introduction to biological control. Cambridge University Press.

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology®, 96(2), 190-194. https://doi.org/10.1094/phyto-96-0190

Heap, I. (2012) International survey of herbicide resistant weeds. Weed Science Society of America. http:// www.weedscience.org.

Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307-319. https://doi.org/10.1038/nrmicro1129

Karimi, K., Amini, J., Harighi, B., & Bahramnejad, B. (2012). Evaluation of biocontrol potential of “pseudomonas” and “bacillus” spp. against fusarium wilt of chickpea. Australian Journal of Crop Science, 6(4), 695–703. https://search.informit.org/doi/10.3316/informit.362736293688389

Kleijn, D., Bommarco, R., Fijen, T. P., Garibaldi, L. A., Potts, S. G., & Van der Putten, W. H. (2019). Ecological intensification: Bridging the gap between science and practice. Trends in Ecology & Evolution, 34(2), 154-166. https://doi.org/10.1016/j.tree.2018.11.002

Kumar, S. & Singh, A. J. J. B. B. (2014). Biopesticides for integrated crop management: Environmental and regulatory aspects. Journal of Biofertilizers & Biopesticides, 05(01). https://doi.org/10.4172/2155-6202.1000e121

Kumar, A., Maurya, B., & Raghuwanshi, R. (2014). Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3(4), 121-128. https://doi.org/10.1016/j.bcab.2014.08.003

Lacey, L. A. and Siegel, J. P. (2000) 'Safety and ecotoxicology of entomopathogenic bacteria', Entomopathogenic bacteria: From laboratory to field application: Springer, pp. 253-273.

Li, Z., Alves, S. B., Roberts, D. W., Fan, M., Delalibera, I., Tang, J., Lopes, R. B., Faria, M., & Rangel, D. E. (2010). Biological control of insects in Brazil and China: History, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Science and Technology, 20(2), 117-136. https://doi.org/10.1080/09583150903431665

Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J., & Thomas, M. (2001). Biological control of locusts and grasshoppers. Annual review of entomology, 46(1), 667-702. https://doi.org/10.1146/annurev.ento.46.1.667

Luo, X. (2010) Sequence Analysis and Transcriptional Profiling of Ligninolytic Genes in Lentinula Edodes. Chinese University of Hong Kong.

Mahfouz, M., & Mohamed, M. (2019). Towards optimization of entomopathogenic nematodes for more service in the biological control. J Nematol, 51, 1-48. https://sciendo.com/pdf/10.21307/jofnem-2019-065

Mardanova, A. M., Fanisovna Hadieva, G., Tafkilevich Lutfullin, M., Valer’evna Khilyas, I., Farvazovna Minnullina, L., Gadelevna Gilyazeva, A., Mikhailovna Bogomolnaya, L., & Rashidovna Sharipova, M. (2017). <i>Bacillus subtilis Strains</i> with Antifungal activity against the Phytopathogenic fungi. Agricultural Sciences, 08(01), 1-20. https://doi.org/10.4236/as.2017.81001

Meena, B., Radhajeyalakshmi, R., Vidhyasekaran, P., & Velazhahan, R. (2000). Effect of foliar application of pseudomonas fluoresencens on activities of phenylalanine ammonia-lyase, chitinase and β-1,3–glucanase and accumulation of phenolics in rice. Acta Phytopathologica et Entomologica Hungarica, 34(4), 307-315. https://doi.org/10.1556/aphyt.34.1999.4.6 ss

Midmore, D. J., Parker, J., & Clark, J. (2005). An issue for the Asian vegetables and herbs & spices industries.

Millennium ecosystem assessment, M. (2005) Ecosystems and human well-being. Island press Washington, DC.

Mishenin, Y., Yarova, I., & Koblianska, I. (2021). Ecologically harmonized agricultural management for global food security. Ecological Intensification of Natural Resources for Sustainable Agriculture, 29-76. https://doi.org/10.1007/978-981-33-4203-3_2

Oerke, E.-C., Dehne, H.-W., Schönbeck, F. and Weber, A. (2012) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier.

Osman, K. M., Da Silva Pires, Á., Franco, O. L., Saad, A., Hamed, M., Naim, H., Ali, A. H., & Elbehiry, A. (2021). Nile tilapia (Oreochromis niloticus) as an aquatic vector for pseudomonas species of medical importance: Antibiotic resistance association with Biofilm formation, quorum sensing and virulence. Aquaculture, 532, 736068. https://doi.org/10.1016/j.aquaculture.2020.736068

Pretty, J. (2007). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447-465. https://doi.org/10.1098/rstb.2007.2163

Reddy, G. V., Cruz, Z. T., & Guerrero, A. (2009). Development of an efficient pheromone-based trapping method for the banana root borer cosmopolites sordidus. Journal of Chemical Ecology, 35(1), 111-117. https://doi.org/10.1007/s10886-008-9580-6

Rizzo, D. M., Lichtveld, M., Mazet, J. A., Togami, E., & Miller, S. A. (2021). Plant health and its effects on food safety and security in a one health framework: Four case studies. One Health Outlook, 3(1). https://doi.org/10.1186/s42522-021-00038-7

Sarkar, S., Gil, J. D. B., Keeley, J. and Jansen, K. (2021) The use of pesticides in developing countries and their impact on health and the right to food. European Union.

Sato, M. E., Silva, M. Z., Raga, A., & Souza Filho, M. F. (2005). Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotropical Entomology, 34(6), 991-998. https://doi.org/10.1590/s1519-566x2005000600016

Schmutterer, H. (1990). Properties and potential of natural pesticides from the neem tree, Azadirachta Indica. Annual Review of Entomology, 35(1), 271-297. https://doi.org/10.1146/annurev.ento.35.1.271

Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Carni Klirs. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report. In World Resources Institute eBooks.

Siegel, J. P. (2001). The mammalian safety of bacillus thuringiensis- Based insecticides. Journal of Invertebrate Pathology, 77(1), 13-21. https://doi.org/10.1006/jipa.2000.5000

Silvério, F. O., De Alvarenga, E. S., Moreno, S. C., & Picanço, M. C. (2009). Synthesis and insecticidal activity of new pyrethroids. Pest Management Science, 65(8), 900-905. https://doi.org/10.1002/ps.1771

Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2), 185-194. https://doi.org/10.1016/s0168-1605(03)00380-5

Speranza, C. I., Kiteme, B., & Wiesmann, U. (2008). Droughts and famines: The underlying factors and the causal links among agro-pastoral households in semi-arid Makueni district, Kenya. Global Environmental Change, 18(1), 220-233. https://doi.org/10.1016/j.gloenvcha.2007.05.001

Stanley, J., Preetha, G. and Stanley, J. (2016) Pesticide toxicity to non-target organisms. Springer.

TeBeest, D. O. (2012) Microbial control of weeds. Springer Science & Business Media.

Thacker, J. R. (2002) introduction to arthropod pest control. Cambridge university press.

Urgancı, N. N., Yılmaz, N., Koçer Alaşalvar, G., & Yıldırım, Z. (2022). Pseudomonas aeruginosa and its pathogenicity. Turkish Journal of Agriculture - Food Science and Technology, 10(4), 726-738. https://doi.org/10.24925/turjaf.v10i4.726-738.4986

Validov, S. (2007) Biocontrol of tomato foot and root rot by Pseudomonas bacteria in stonewool. Leiden University.

Van Emden, H. F. (2004) Pest and vector control. Cambridge University Press.

Verma, J. P., Jaiswal, D. K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: A-state-of-art. Reviews in Environmental Science and Bio/Technology, 13(4), 429-466. https://doi.org/10.1007/s11157-014-9341-7

Whipps, J. M., Sreenivasaprasad, S., Muthumeenakshi, S., Rogers, C. W., & Challen, M. P. (n.d.). Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Sustainable disease management in a European context, 323-330. https://doi.org/10.1007/978-1-4020-8780-6_11

Witzgall, P., Stelinski, L., Gut, L., & Thomson, D. (2008). Codling moth management and chemical ecology. Annual Review of Entomology, 53(1), 503-522. https://doi.org/10.1146/annurev.ento.53.103106.093323

Wylie, F. R. and Speight, M. R. (2012) Insect pests in tropical forestry. CABI.

Yu, X., Li, H., & Doluschitz, R. (2020). Towards sustainable management of mineral fertilizers in China: An integrative analysis and review. Sustainability, 12(17), 7028. https://doi.org/10.3390/su12177028

Zain, S. N., Flint, S. H., Bennett, R., & Tay, H. (2015). Characterisation and biofilm screening of the predominant bacteria isolated from whey protein concentrate 80. Dairy Science & Technology, 96(3), 285-295. https://doi.org/10.1007/s13594-015-0264-z

Downloads

Published

2024-12-09

How to Cite

Isolation and Identification of Bacillus Subtilis and Pseudomonas Fluorescens from Wheat Rhizosphere and Their Use as Biocontrol Agents. (2024). Indus Journal of Bioscience Research, 2(02), 918-931. https://doi.org/10.70749/ijbr.v2i02.295