Precision Irrigation Systems for Sustainable Water Management in Maize Cultivation: Impact on Yield and Water Use Efficiency

Authors

  • Arnab Kundu Hemvati Nandan Bahuguna Garhwal University, India.
  • Sadia Waris Department of Botany, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Shagufta Sanam Department of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, KP, Pakistan.
  • Hira Aslam Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Buhram Khan Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Sindhu Kumari Bogati Yunnan Agricultural University, Kunming, China.
  • Muhammad Rizwan Agronomy Agriculture Science, Institute of Agronomy, Bahaudin Zakriya University, Multan, Punjab, Pakistan.
  • Muhammad Jamshed Agronomy Agriculture Science, Institute of Agronomy, Bahaudin Zakriya University, Multan, Punjab, Pakistan.
  • Muhammad Saad Majeed Department of Human Nutrition and Dietetics, The Islamia University of Bahawalpur, Punjab, Pakistan.
  • Mohammad Ashfaq Department of Soil Science, Faculty of Agriculture and Environment Science, the Islamia University of Bahawalpur, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.399

Keywords:

Precision Irrigation, Maize Cultivation, Water use Efficiency, Crop Yield, Agricultural Technology

Abstract

This research aims at evaluating the effectiveness of precision irrigation systems in increasing yield and water productivity in maize production. While it is well understood that the technology offers the ability to apply water selectively and, therefore, be resource-saving, the potential benefits in practice have not been researched adequately. Quantitative data was obtained through survey administration with 50 maize farmers on the use and perception of precision irrigation. Descriptive and inferential analytical tools such as Chi-Square tests, t-tests and regression analysis were used to test the hypothesis that precision irrigation practices has positive effects on crop yields and water use. The results suggest that precision irrigation technologies do not increase crop productivity or water use efficiency in the sample analyzed. The correlation and regression tests showed no meaning co-efficient and there were no correlations for most variables and no impacts were found in variance analysis either, moreover, the R-squared in regression analysis was very low, thus there might be other factors that could be possibly more important for defining the results of maize production The research also finds that despite the potential advantages of precision irrigation systems, their implementation does not improve crop yield or water use in the examined scenario. This underlines the fact that agricultural systems are highly differentiated and that is why it is necessary to take into account the local conditions in order to use such technologies.

Downloads

Download data is not yet available.

References

Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Rahman, M. K. I. A., Otuoze, A. O., Onotu, P., & Ramli, M. S. A. (2020). A review on monitoring and advanced control strategies for precision irrigation. Computers and Electronics in Agriculture, 173, 105441. https://doi.org/10.1016/j.compag.2020.105441

Amorim, H. C., Ashworth, A. J., Brye, K. R., Wienhold, B. J., Savin, M. C., Owens, P. R., & Silva, S. H. (2021). Soil quality indices as affected by long‐term burning, irrigation, tillage, and fertility management. Soil Science Society of America Journal, 85(2), 379-395. https://doi.org/10.1002/saj2.20188

Bonfante, A., Monaco, E., Manna, P., De Mascellis, R., Basile, A., Buonanno, M., Cantilena, G., Esposito, A., Tedeschi, A., De Michele, C., Belfiore, O., Catapano, I., Ludeno, G., Salinas, K., & Brook, A. (2019). LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agricultural Systems, 176, 102646. https://doi.org/10.1016/j.agsy.2019.102646

Bwambale, E., Naangmenyele, Z., Iradukunda, P., Agboka, K. M., Houessou-Dossou, E. A., Akansake, D. A., Bisa, M. E., Hamadou, A. H., Hakizayezu, J., Onofua, O. E., & Chikabvumbwa, S. R. (2022). Towards precision irrigation management: A review of GIS, remote sensing and emerging technologies. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2100573

Cao, X., Xiao, J., Wu, M., Zeng, W., & Huang, X. (2021). Agricultural water use efficiency and driving force assessment to improve regional productivity and effectiveness. Water Resources Management, 35(8), 2519-2535. https://doi.org/10.1007/s11269-021-02845-z

Clapp, J., & Ruder, S. (2020). Precision technologies for agriculture: Digital farming, gene-edited crops, and the politics of sustainability. Global Environmental Politics, 20(3), 49-69. https://doi.org/10.1162/glep_a_00566

D’Odorico, P., Chiarelli, D. D., Rosa, L., Bini, A., Zilberman, D., & Rulli, M. C. (2020). The global value of water in agriculture. Proceedings of the National Academy of Sciences, 117(36), 21985-21993. https://doi.org/10.1073/pnas.2005835117

Dahane, A., Benameur, R., & Kechar, B. (2022). An IoT low-cost smart farming for enhancing irrigation efficiency of smallholders farmers. Wireless Personal Communications, 127(4), 3173-3210. https://doi.org/10.1007/s11277-022-09915-4

De Lara, A., Longchamps, L., & Khosla, R. (2019). Soil water content and high-resolution imagery for precision irrigation: Maize yield. Agronomy, 9(4), 174. https://doi.org/10.3390/agronomy9040174

El Chami, D., Knox, J. W., Daccache, A., & Weatherhead, E. K. (2019). Assessing the financial and environmental impacts of precision irrigation in a humid climate. Horticultural Science, 46(1), 43-52. https://doi.org/10.17221/116/2017-hortsci

Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E., & Ippolito, A. (2019). Agricultural water pollution: Key knowledge gaps and research needs. Current Opinion in Environmental Sustainability, 36, 20-27. https://doi.org/10.1016/j.cosust.2018.10.003

Fang, J., & Su, Y. (2019). Effects of soils and irrigation volume on maize yield, irrigation water productivity, and nitrogen uptake. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-41447-z

Fazliеv, J., Khaitova, I., Atamurodov, B., Rustamova, K., Ravshanov, U., & Sharipova, M. (2019). Efficiency of applying the water-saving irrigation technologies in irrigated farming. Интернаука, 21(103 часть 3), 35.

Finger, R., Swinton, S. M., El Benni, N., & Walter, A. (2019). Precision farming at the nexus of agricultural production and the environment. Annual Review of Resource Economics, 11(1), 313-335. https://doi.org/10.1146/annurev-resource-100518-093929

Gachene, C. K., Nyawade, S. O., & Karanja, N. N. (2020). Soil and water conservation: An overview. Encyclopedia of the UN Sustainable Development Goals, 810-823. https://doi.org/10.1007/978-3-319-95675-6_91

Higgins, S., Schellberg, J., & Bailey, J. (2019). Improving productivity and increasing the efficiency of soil nutrient management on grassland farms in the UK and Ireland using precision agriculture technology. European Journal of Agronomy, 106, 67-74. https://doi.org/10.1016/j.eja.2019.04.001

Karunathilake, E. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. https://doi.org/10.3390/agriculture13081593

Khanna, A. (2020). An overview of technology driven solutions to the water crisis in developing nations. International Journal of Social Science and Economic Research, 05(05), 1295-1302. https://doi.org/10.46609/ijsser.2020.v05i05.013

Lakhiar, I. A., Yan, H., Zhang, C., Wang, G., He, B., Hao, B., Han, Y., Wang, B., Bao, R., Syed, T. N., Chauhdary, J. N., & Rakibuzzaman, M. (2024). A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture, 14(7), 1141. https://doi.org/10.3390/agriculture14071141

Li, C., Xiong, Y., Cui, Z., Huang, Q., Xu, X., Han, W., & Huang, G. (2020). Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zea mays L.) in the Hetao irrigation district of China. Agricultural Water Management, 232, 106065. https://doi.org/10.1016/j.agwat.2020.106065

Lu, S., Bai, X., Li, W., & Wang, N. (2019). Impacts of climate change on water resources and grain production. Technological Forecasting and Social Change, 143, 76-84. https://doi.org/10.1016/j.techfore.2019.01.015

Mola, M., Kougias, P. G., Statiris, E., Papadopoulou, P., Malamis, S., & Monokrousos, N. (2024). Short-term effect of reclaimed water irrigation on soil health, plant growth and the composition of soil microbial communities. Science of The Total Environment, 949, 175107. https://doi.org/10.1016/j.scitotenv.2024.175107

Mpanga, I. K., Gaikpa, D. S., Koomson, E., & Dapaah, H. K. (2023). Innovations in water management: Agriculture. The Palgrave Handbook of Global Sustainability, 381-403. https://doi.org/10.1007/978-3-031-01949-4_33

Obaideen, K., Yousef, B. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. https://doi.org/10.1016/j.nexus.2022.100124

Pérez-Blanco, C. D., Hrast-Essenfelder, A., & Perry, C. (2020). Irrigation technology and water conservation: A review of the theory and evidence. Review of Environmental Economics and Policy, 14(2), 216-239. https://doi.org/10.1093/reep/reaa004

Sharma, V., Tripathi, A. K., & Mittal, H. (2022). Technological revolutions in smart farming: Current trends, challenges & future directions. Computers and Electronics in Agriculture, 201, 107217. https://doi.org/10.1016/j.compag.2022.107217

Tashayo, B., Honarbakhsh, A., Akbari, M., & Eftekhari, M. (2020). Land suitability assessment for maize farming using a GIS-AHP method for a semi- arid region, Iran. Journal of the Saudi Society of Agricultural Sciences, 19(5), 332-338. https://doi.org/10.1016/j.jssas.2020.03.003

THOMPSON, N. M., BIR, C., WIDMAR, D. A., & MINTERT, J. R. (2018). Farmer perceptions of precision agriculture technology benefits. Journal of Agricultural and Applied Economics, 51(1), 142-163. https://doi.org/10.1017/aae.2018.27

Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., Batlles-delaFuente, A., & Fidelibus, M. D. (2019). Sustainable irrigation in agriculture: An analysis of global research. Water, 11(9), 1758. https://doi.org/10.3390/w11091758

Wang, W., He, A., Jiang, G., Sun, H., Jiang, M., Man, J., Ling, X., Cui, K., Huang, J., Peng, S., & Nie, L. (2020). Ratoon rice technology: A green and resource-efficient way for rice production. Advances in Agronomy, 135-167. https://doi.org/10.1016/bs.agron.2019.07.006

Xiao, G., Zhao, Z., Liang, L., Meng, F., Wu, W., & Guo, Y. (2019). Improving nitrogen and water use efficiency in a wheat-maize rotation system in the north China plain using optimized farming practices. Agricultural Water Management, 212, 172-180. https://doi.org/10.1016/j.agwat.2018.09.011

Yuan, C., Feng, S., Huo, Z., & Ji, Q. (2019). Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid northwest China. Agricultural Water Management, 212, 424-432. https://doi.org/10.1016/j.agwat.2018.09.019

Zhang, G., Shen, D., Ming, B., Xie, R., Jin, X., Liu, C., Hou, P., Xue, J., Chen, J., Zhang, W., Liu, W., Wang, K., & Li, S. (2019). Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China. The Crop Journal, 7(3), 322-334. https://doi.org/10.1016/j.cj.2018.10.008

Zhang, J., Guan, K., Peng, B., Jiang, C., Zhou, W., Yang, Y., Pan, M., Franz, T. E., Heeren, D. M., Rudnick, D. R., Abimbola, O., Kimm, H., Caylor, K., Good, S., Khanna, M., Gates, J., & Cai, Y. (2021). Challenges and opportunities in precision irrigation decision-support systems for center pivots. Environmental Research Letters, 16(5), 053003. https://doi.org/10.1088/1748-9326/abe436

Zhang, P., Guo, Z., Ullah, S., Melagraki, G., Afantitis, A., & Lynch, I. (2021). Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants, 7(7), 864-876. https://doi.org/10.1038/s41477-021-00946-6

Zinkernagel, J., Maestre-Valero, J. F., Seresti, S. Y., & Intrigliolo, D. S. (2020). New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agricultural Water Management, 242, 106404. https://doi.org/10.1016/j.agwat.2020.106404

Lehmann, J., Bossio, D. A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1(10), 544-553. https://doi.org/10.1038/s43017-020-0080-8

Leakey, A. D., Ferguson, J. N., Pignon, C. P., Wu, A., Jin, Z., Hammer, G. L., & Lobell, D. B. (2019). Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annual Review of Plant Biology, 70(1), 781-808. https://doi.org/10.1146/annurev-arplant-042817-040305

Downloads

Published

2025-01-08

How to Cite

Precision Irrigation Systems for Sustainable Water Management in Maize Cultivation: Impact on Yield and Water Use Efficiency. (2025). Indus Journal of Bioscience Research, 3(1), 85-94. https://doi.org/10.70749/ijbr.v3i1.399