Solar Photocatalytic Removal of Natural Organic Matter using Fluorinated Calcium Zincate Grafted on Gravel

Authors

  • Tahseen Anwer Department of Chemistry, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Iqra Shahzadi College of Earth and Environmental Sciences, University of the Punjab, Lahore, Punjab, Pakistan.
  • Syed Anwaar Hussain Shah Department of Physics, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Amna Nasir Department of Chemistry, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Arslan Khan Department of Environmental Sciences, The University of Lahore, Punjab, Pakistan.
  • Maryam iqbal Department of Biochemistry, Abdul Wali Khan University Mardan, KP, Pakistan.
  • Sayeda Nimra jabeen Department of Chemistry, Government College Women University, Faisalabad, Punjab, Pakistan
  • Muhammad Rizwan Javed Center of Excellence in Solid State Physics, University of the Punjab, Lahore, Punjab, Pakistan.
  • Wasifa Department of Chemistry, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Syed Muneeb ur Rehman Center of Excellence in Solid State Physics, University of the Punjab, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v2i02.429

Keywords:

Solar photocatalysis, Fluorinated calcium zincate, Gravel-supported catalysts, Water treatment, Environmental sustainability

Abstract

Natural organic matter issue (NOM) is a delegated class of harmful poisons in water that must be evacuated by utilizing efficient and eco-accommodating treatment procedures to chop down water contamination. In this, a composite of the evacuation of NOM utilizing fluorinated and non-fluorinated calcium zincate composite joined over rock by splash pyrolysis technique was accounted for. The created material was portrayed by checking electron microscopy, vitality dispersive X-beam, Fourier change infrared spectroscopy and X-beam diffraction spectroscopy. Response parameters like starting centralization of NOM and oxidant (H2O2), introductory pH and light time were improved utilizing the Reaction surface technique (RSM). Later, photocatalytic movement of fluorinated/non-fluorinated calcium zincate under conditions streamlined by RSM to debase NOM in city wastewater upon daylight presentation was resolved. NOM's degree of debasement was estimated using UV/noticeable spectrophotometer, Fourier change infrared spectroscopy (FTIR) and elite fluid chromatography (HPLC). Water quality parameters, such as natural oxygen request, substance oxygen request, and aggregate natural carbon, were resolved. Treated wastewater can be reused for water systems, washing and mechanical procedures.

Downloads

Download data is not yet available.

References

Acero, J. L., Benitez, F. J., Real, F. J., & Teva, F. (2016). Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chemical Engineering Journal, 289, 48–58. https://doi.org/10.1016/j.cej.2015.12.082

Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, Md. A., Inayat, A., Mahlia, T. M. I., Ong, H. C., Chia, W. Y., & Show, P. L. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of Hazardous Materials, 416, 125912. https://doi.org/10.1016/j.jhazmat.2021.125912

Alatas, B., Akin, E., & Ozer, A. B. (2009). Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals, 40(4), 1715-1734. https://doi.org/10.1016/j.chaos.2007.09.063

Amini, M., & Ashrafi, M. (2016). Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles. Nanochemistry Research, 1(1), 79-86. https://doi.org/10.15242/ijacebs.u1016204

Andreozzi, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51-59. https://doi.org/10.1016/s0920-5861(99)00102-9

Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. (2019). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897-4919. https://doi.org/10.1016/j.arabjc.2016.10.004

Anwar, Y., Khan, S., Hasan, S. W., Gamgali, A. R., Asif, M., Rahman, H. U., Ahmad, A., & Javed, M. S. (2024). Application of Nanostructured materials for the remediation of microbes contaminated water and sustainable water treatment. Journal of Chemistry and Environment, 3(1). https://doi.org/10.56946/jce.v3i1.294

Ashar, A., Iqbal, M., Bhatti, I. A., Ahmad, M. Z., Qureshi, K., Nisar, J., & Bukhari, I. H. (2016). Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol ethoxylate degradation under UV and solar irradiation. Journal of Alloys and Compounds, 678, 126-136. https://doi.org/10.1016/j.jallcom.2016.03.251

Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering and Processing - Process Intensification, 109, 178-189. https://doi.org/10.1016/j.cep.2016.08.016

Borah, P., Kumar, M., & Devi, P. (2020). Types of inorganic pollutants: metals/metalloids, acids, and organic forms. In Inorganic contaminants in water (pp. 17-31). Elsevier.

Dad, A., Jeong, C. H., Wagner, E. D., & Plewa, M. J. (2018). Haloacetic acid water disinfection byproducts affect pyruvate Dehydrogenase activity and disrupt cellular metabolism. Environmental Science & Technology, 52(3), 1525-1532. https://doi.org/10.1021/acs.est.7b04290

Hwang, T., Kotte, M. R., Han, J., Oh, Y., & Diallo, M. S. (2015). Microalgae recovery by ultrafiltration using novel fouling-resistant PVDF membranes with in situ PEGylated polyethyleneimine particles. Water Research, 73, 181-192. https://doi.org/10.1016/j.watres.2014.12.002

Imoberdorf, G., & Mohseni, M. (2011). Degradation of natural organic matter in surface water using vacuum-UV irradiation. Journal of Hazardous Materials, 186(1), 240-246. https://doi.org/10.1016/j.jhazmat.2010.10.118

Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide—From synthesis to application: A review. Materials, 7(4), 2833-2881. https://doi.org/10.3390/ma7042833

Owodunni, A. A., & Ismail, S. (2021). Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment—A review. Journal of Water Process Engineering, 42, 102096. https://doi.org/10.1016/j.jwpe.2021.102096

Podporska-Carroll, J., Myles, A., Quilty, B., McCormack, D. E., Fagan, R., Hinder, S. J., Dionysiou, D. D., & Pillai, S. C. (2017). Antibacterial properties of F-doped ZnO visible light photocatalyst. Journal of Hazardous Materials, 324, 39-47. https://doi.org/10.1016/j.jhazmat.2015.12.038

Rajbongshi, B. M., & Samdarshi, S. (2014). Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Applied Catalysis B: Environmental, 144, 435-441. https://doi.org/10.1016/j.apcatb.2013.07.048

RAJKUMAR, D., & KIM, J. (2006). Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. Journal of Hazardous Materials, 136(2), 203-212. https://doi.org/10.1016/j.jhazmat.2005.11.096

Rodriguez-Navarro, C., Burgos Cara, A., Elert, K., Putnis, C. V., & Ruiz-Agudo, E. (2016). Direct nanoscale imaging reveals the growth of calcite crystals via amorphous nanoparticles. Crystal Growth & Design, 16(4), 1850-1860. https://doi.org/10.1021/acs.cgd.5b01180

Samanta, A., Chanda, D. K., Das, P. S., Ghosh, J., Mukhopadhyay, A. K., & Dey, A. (2015). Synthesis of Nano calcium hydroxide in aqueous medium. Journal of the American Ceramic Society, 99(3), 787-795. https://doi.org/10.1111/jace.14023

Samudro, G., & Mangkoedihardjo, S. (2010). REVIEW ON BOD, COD AND BOD/COD RATIO: A TRIANGLE ZONE FOR TOXIC, BIODEGRADABLE AND STABLE LEVELS. International Journal of Academic Research, 2(4).

Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P., & Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595. https://doi.org/10.1016/j.chemosphere.2021.130595

Sharma, K., & Purohit, L. (2024). Solar light assisted enhanced photocatalytic activity of smart ternary ZnO:TiO2:SnO2 nanocomposites. Materials Science in Semiconductor Processing, 182, 108671. https://doi.org/10.1016/j.mssp.2024.108671

Sievert, W., Altraif, I., Razavi, H. A., Abdo, A., Ahmed, E. A., AlOmair, A., Amarapurkar, D., Chen, C., Dou, X., El Khayat, H., ElShazly, M., Esmat, G., Guan, R., Han, K., Koike, K., Largen, A., McCaughan, G., Mogawer, S., Monis, A., … Negro, F. (2011). A systematic review of hepatitis C virus epidemiology in Asia, Australia and Egypt. Liver International, 31(s2), 61-80. https://doi.org/10.1111/j.1478-3231.2011.02540.x

Singh, S., Barick, K. C., & Bahadur, D. (2013). Functional oxide nanomaterials and Nanocomposites for the removal of heavy metals and dyes. Nanomaterials and Nanotechnology, 3, 20. https://doi.org/10.5772/57237

Tiwari, D. K., Behari, J., & Prasenjit Sen, P. S. (2008). Application of nanoparticles in waste water treatment. https://www.cabidigitallibrary.org/doi/full/10.5555/20083116147

Valencia, S. H., Marín, J. M., & Restrepo, G. M. (2012). Evolution of natural organic matter by size exclusion chromatography during photocatalytic degradation by solvothermal-synthesized titanium dioxide. Journal of Hazardous Materials, 213-214, 318-324. https://doi.org/10.1016/j.jhazmat.2012.02.003

Westphall, C. B., Brunner, M., Nogueira, J. M., & Ulema, M. (2008). Pervasive management for ubiquitous networks and services—Report on NOMS 2008. Journal of Network and Systems Management, 16(3), 317-321. https://doi.org/10.1007/s10922-008-9110-4

Downloads

Published

2024-12-31

How to Cite

Solar Photocatalytic Removal of Natural Organic Matter using Fluorinated Calcium Zincate Grafted on Gravel. (2024). Indus Journal of Bioscience Research, 2(02), 1533-1549. https://doi.org/10.70749/ijbr.v2i02.429