A Recent Review On: Effect of Nutrients On Brain Function and Development
DOI:
https://doi.org/10.70749/ijbr.v3i1.444Keywords:
Brain Development, Cognition, Nutrients for Brain, Omega-3, Maternal DietAbstract
Recent studies have demonstrated the important role that nutrition plays in maintaining cognitive health by highlighting the substantial effects of different nutrients on brain growth and function. Research articles from Google scholar, scihub, PUBMED was searched for food and nutrients for brain development and function. Important nutrients that are connected to neurodevelopment, synaptic plasticity, and general cognitive function include omega-3 fatty acids, B vitamins, antioxidants, and vital minerals. The structure and function of the brain depend on omega-3 fatty acids, especially DHA, and neurotransmitter production and cognitive resilience are supported by B vitamins. Vitamins E and C are examples of antioxidants that reduce oxidative stress and support the health of neurons. Cognitive deficits are linked to mineral shortages, especially those involving iron and zinc. This review summarizes research on the relationship between long-term cognitive problems and nutritional deficiencies, particularly during important developmental stages. Additionally, diets high in particular nutrients are linked to better mental health outcomes and lowers risks of various illnesses caused by neurodegeneration. Overall, this review highlights how crucial a balanced diet is for promoting brain health throughout life.
Downloads
References
Chertoff, M. (2015). Protein malnutrition and brain development. Brain Disorders & Therapy, 04(03). https://doi.org/10.4172/2168-975x.1000171
Mahmassani, H. A., Switkowski, K. M., Scott, T. M., Johnson, E. J., Rifas-Shiman, S. L., Oken, E., & Jacques, P. F. (2022). Maternal diet quality during pregnancy and child cognition and behavior in a US cohort. The American Journal of Clinical Nutrition, 115(1), 128-141. https://doi.org/10.1093/ajcn/nqab325
Diéguez, E., Nieto-Ruiz, A., Martín-Pérez, C., Sepúlveda-Valbuena, N., Herrmann, F., Jiménez, J., De-Castellar, R., Catena, A., García-Santos, J. A., Bermúdez, M. G., & Campoy, C. (2022). Association study between hypothalamic functional connectivity, early nutrition, and glucose levels in healthy children aged 6 years: The COGNIS study follow-up. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.935740
Georgieff, M. K. (2022). Early life nutrition and brain development: Breakthroughs, challenges and new horizons. Proceedings of the Nutrition Society, 82(2), 104-112. https://doi.org/10.1017/s0029665122002774
Georgieff, M. K., Ramel, S. E., & Cusick, S. E. (2018). Nutritional influences on brain development. Acta Paediatrica, 107(8), 1310-1321. https://doi.org/10.1111/apa.14287
Wallace, T. C., Blusztajn, J. K., Caudill, M. A., Klatt, K. C., Natker, E., Zeisel, S. H., & Zelman, K. M. (2018). The underconsumed and underappreciated essential nutrient. Nutrition Today, 53(6), 240-253. https://doi.org/10.1097/nt.0000000000000302
Roberts, M., Tolar-Peterson, T., Reynolds, A., Wall, C., Reeder, N., & Rico Mendez, G. (2022). The effects of nutritional interventions on the cognitive development of preschool-age children: A systematic review. Nutrients, 14(3), 532. https://doi.org/10.3390/nu14030532
Dighriri, I. M., Alsubaie, A. M., Hakami, F. M., Hamithi, D. M., Alshekh, M. M., Khobrani, F. A., Dalak, F., Hakami, A. A., Alsueaadi, E. H., Alsaawi, L. S., Alshammari, S. F., Alqahtani, A. S., Alawi, I. A., Aljuaid, A. A., & Tawhari, M. Q. (2022). Effects of omega-3 polyunsaturated fatty acids on brain functions: A systematic review. Cureus. https://doi.org/10.7759/cureus.30091
Comitini, F., Peila, C., Fanos, V., & Coscia, A. (2020). The Docosahexanoic acid: From the maternal-fetal dyad to early life toward Metabolomics. Frontiers in Pediatrics, 8. https://doi.org/10.3389/fped.2020.00538
Fanalli, S., Da Silva, B., Petry, B., Santana, M., Polizel, G., Antunes, R., De Almeida, V., Moreira, G., Luchiari Filho, A., L Coutinho, L., CC Balieiro, J., M Reecy, J., Koltes, J., Koltes, D., & SM Cesar, A. (2022). Dietary fatty acids applied to pig production and their relation to the biological processes: A review. Livestock Science, 265, 105092. https://doi.org/10.1016/j.livsci.2022.105092
Carlson, S. E., & Colombo, J. (2021). DHA and cognitive development. The Journal of Nutrition, 151(11), 3265-3266. https://doi.org/10.1093/jn/nxab299
Van Dael, P. (2021). Role of N-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutrition Research and Practice, 15(2), 137. https://doi.org/10.4162/nrp.2021.15.2.137
Martinat, M., Rossitto, M., Di Miceli, M., & Layé, S. (2021). Perinatal dietary polyunsaturated fatty acids in brain development, role in neurodevelopmental disorders. Nutrients, 13(4), 1185. https://doi.org/10.3390/nu13041185
Wood, A. H., Chappell, H. F., & Zulyniak, M. A. (2021). Dietary and supplemental long-chain omega-3 fatty acids as moderators of cognitive impairment and Alzheimer's disease. European Journal of Nutrition, 61(2), 589-604. https://doi.org/10.1007/s00394-021-02655-4
Basak, S., & Duttaroy, A. K. (2022). Maternal PUFAs, placental epigenetics, and their relevance to fetal growth and brain development. Reproductive Sciences, 30(2), 408-427. https://doi.org/10.1007/s43032-022-00989-w
Ostadrahimi, A., Salehi-pourmehr, H., Mohammad-Alizadeh-Charandabi, S., Heidarabady, S., & Farshbaf-Khalili, A. (2017). The effect of perinatal fish oil supplementation on neurodevelopment and growth of infants: A randomized controlled trial. European Journal of Nutrition, 57(7), 2387-2397. https://doi.org/10.1007/s00394-017-1512-1
Fan, C., Fu, H., Dong, H., Lu, Y., Lu, Y., & Qi, K. (2016). Maternal N-3 polyunsaturated fatty acid deprivation during pregnancy and lactation affects neurogenesis and apoptosis in adult offspring: Associated with DNA methylation of brain-derived neurotrophic factor transcripts. Nutrition Research, 36(9), 1013-1021. https://doi.org/10.1016/j.nutres.2016.06.005
Chu, C., Hung, C., Ponnusamy, V. K., Chen, K., & Chen, N. (2022). Higher serum DHA and slower cognitive decline in patients with Alzheimer's disease: Two-year follow-up. Nutrients, 14(6), 1159. https://doi.org/10.3390/nu14061159
McNamara, R. K., & Almeida, D. M. (2019). Omega-3 polyunsaturated fatty acid deficiency and progressive neuropathology in psychiatric disorders: A review of translational evidence and candidate mechanisms. Harvard Review of Psychiatry, 27(2), 94-107. https://doi.org/10.1097/hrp.0000000000000199
Hachem, M., & Nacir, H. (2022). Emerging role of phospholipids and Lysophospholipids for improving brain Docosahexaenoic acid as potential preventive and therapeutic strategies for neurological diseases. International Journal of Molecular Sciences, 23(7), 3969. https://doi.org/10.3390/ijms23073969
Huhn, S., Kharabian Masouleh, S., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in Aging Neuroscience, 7. https://doi.org/10.3389/fnagi.2015.00132
Stoney, P. N., & McCaffery, P. (2016). A vitamin on the mind: New discoveries on control of the brain by vitamin A. World Review of Nutrition and Dietetics, 98-108. https://doi.org/10.1159/000442076
Youness, R. A., Dawoud, A., ElTahtawy, O., & Farag, M. A. (2022). Fat-soluble vitamins: Updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutrition & Metabolism, 19(1). https://doi.org/10.1186/s12986-022-00696-y
Bordeleau, M., Fernández de Cossío, L., Chakravarty, M. M., & Tremblay, M. (2021). From maternal diet to neurodevelopmental disorders: A story of Neuroinflammation. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/fncel.2020.612705
Park, J., Kim, S., Lee, S., Jeong, Y., Roy, V. C., Rizkyana, A. D., & Chun, B. (2021). Edible oil extracted from anchovies using supercritical CO2: Availability of fat?soluble vitamins and comparison with commercial oils. Journal of Food Processing and Preservation, 45(5). https://doi.org/10.1111/jfpp.15441
Ravisankar, P., Reddy, A. A., Nagalakshmi, B., Koushik, O. S., Kumar, B. V., & Anvith, P. S. (2015). The comprehensive review on fat soluble vitamins. IOSR Journal of Pharmacy, 5(11), 12-28.
Ekstrand, B., Scheers, N., Rasmussen, M. K., Young, J. F., Ross, A. B., & Landberg, R. (2020). Brain foods - the role of diet in brain performance and health. Nutrition Reviews, 79(6), 693-708. https://doi.org/10.1093/nutrit/nuaa091
Ford, A. H., & Almeida, O. P. (2019). Effect of vitamin B supplementation on cognitive function in the elderly: A systematic review and meta-analysis. Drugs & Aging, 36(5), 419-434. https://doi.org/10.1007/s40266-019-00649-w
Kwok, T., Wu, Y., Lee, J., Lee, R., Yung, C. Y., Choi, G., Lee, V., Harrison, J., Lam, L., & Mok, V. (2020). A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients. Clinical Nutrition, 39(8), 2399-2405. https://doi.org/10.1016/j.clnu.2019.11.005
Clarke, R., Bennett, D., Parish, S., Lewington, S., Skeaff, M., Eussen, S. J., Lewerin, C., Stott, D. J., Armitage, J., Hankey, G. J., Lonn, E., Spence, J. D., Galan, P., De Groot, L. C., Halsey, J., Dangour, A. D., Collins, R., & Grodstein, F. (2014). Effects of homocysteine lowering with B vitamins on cognitive aging: Meta-analysis of 11 trials with cognitive data on 22,000 individuals. The American Journal of Clinical Nutrition, 100(2), 657-666. https://doi.org/10.3945/ajcn.113.076349
Zhang, D., Ye, J., Mu, J., & Cui, X. (2016). Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. Journal of Geriatric Psychiatry and Neurology, 30(1), 50-59. https://doi.org/10.1177/0891988716673466
Kennedy, D. (2016). B vitamins and the brain: Mechanisms, dose and efficacy-A review. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068
Szot, M., Karp?cka-Ga?ka, E., Dró?d?, R., & Fr?czek, B. (2022). Can nutrients and dietary supplements potentially improve cognitive performance also in Esports? Healthcare, 10(2), 186. https://doi.org/10.3390/healthcare10020186
Franco, C. N., Seabrook, L. J., Nguyen, S. T., Leonard, J. T., & Albrecht, L. V. (2022). Simplifying the B complex: How vitamins B6 and B9 modulate one carbon metabolism in cancer and beyond. Metabolites, 12(10), 961. https://doi.org/10.3390/metabo12100961
Szot, M., Karp?cka-Ga?ka, E., Dró?d?, R., & Fr?czek, B. (2022). Can nutrients and dietary supplements potentially improve cognitive performance also in Esports? Healthcare, 10(2), 186. https://doi.org/10.3390/healthcare10020186
Virdi, S., & Jadavji, N. M. (2022). The impact of maternal Folates on brain development and function after birth. Metabolites, 12(9), 876. https://doi.org/10.3390/metabo12090876
Rahat, B., Hamid, A., Bagga, R., & Kaur, J. (2022). Folic acid levels during pregnancy regulate trophoblast invasive behavior and the possible development of Preeclampsia. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.847136
Brieger, K. K., Bakulski, K. M., Pearce, C. L., Baylin, A., Dou, J. F., Feinberg, J. I., ... & Schmidt, R. J. (2022). The association of prenatal vitamins and folic acid supplement intake with odds of autism spectrum disorder in a high-risk sibling cohort, the Early Autism Risk Longitudinal Investigation (EARLI). Journal of Autism and Developmental Disorders, 52(6), 2801-2811. https://doi.org/10.1097/01.ee9.0000606096.97574.5d
Marques, A. H., O'Connor, T. G., Roth, C., Susser, E., & Bjørke-Monsen, A. (2013). The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00120
Watanabe, F., Yabuta, Y., Bito, T., & Teng, F. (2014). Vitamin B12-containing plant food sources for vegetarians. Nutrients, 6(5), 1861-1873. https://doi.org/10.3390/nu6051861
Sobczy?ska-Malefora, A., Delvin, E., McCaddon, A., Ahmadi, K. R., & Harrington, D. J. (2021). Vitamin B12status in health and disease: A critical review. Diagnosis of deficiency and insufficiency - clinical and laboratory pitfalls. Critical Reviews in Clinical Laboratory Sciences, 58(6), 399-429. https://doi.org/10.1080/10408363.2021.1885339
Anjum, I., Jaffery, S. S., Fayyaz, M., Samoo, Z., & Anjum, S. (2018). The role of vitamin D in brain health: A mini literature review. Cureus. https://doi.org/10.7759/cureus.2960
DeLuca, G. C., Kimball, S. M., Kolasinski, J., Ramagopalan, S. V., & Ebers, G. C. (2013). Review: The role of vitamin D in nervous system health and disease. Neuropathology and Applied Neurobiology, 39(5), 458-484. https://doi.org/10.1111/nan.12020
Annweiler, C., Dursun, E., Féron, F., Gezen-Ak, D., Kalueff, A. V., Littlejohns, T., Llewellyn, D., Millet, P., Scott, T., Tucker, K. L., Yilmazer, S., & Beauchet, O. (2016). Vitamin D and cognition in older adults: International consensus guidelines. Gériatrie et Psychologie Neuropsychiatrie du Viellissement, 14(3), 265-273. https://doi.org/10.1684/pnv.2016.0613
Cui, X., & Eyles, D. W. (2022). Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients, 14(20), 4353. https://doi.org/10.3390/nu14204353
Groves, N. J., McGrath, J. J., & Burne, T. H. (2014). Vitamin D as a Neurosteroid affecting the developing and adult brain. Annual Review of Nutrition, 34(1), 117-141. https://doi.org/10.1146/annurev-nutr-071813-105557
Navale, S. S., Mulugeta, A., Zhou, A., Llewellyn, D. J., & Hyppönen, E. (2022). Vitamin D and brain health: An observational and mendelian randomization study. The American Journal of Clinical Nutrition, 116(2), 531-540. https://doi.org/10.1093/ajcn/nqac107
Croll, P. H., Boelens, M., Vernooij, M. W., Van de Rest, O., Zillikens, M. C., Ikram, M. A., & Voortman, T. (2021). Associations of vitamin D deficiency with MRI markers of brain health in a community sample. Clinical Nutrition, 40(1), 72-78. https://doi.org/10.1016/j.clnu.2020.04.027
Pet, M. A., & Brouwer-Brolsma, E. M. (2016). The impact of maternal vitamin D status on offspring brain development and function: A systematic review. Advances in Nutrition, 7(4), 665-678. https://doi.org/10.3945/an.115.010330
Meza-Meza, M. R., Muñoz-Valle, J. F., Ruiz-Ballesteros, A. I., Vizmanos-Lamotte, B., Parra-Rojas, I., Martínez-López, E., Oregon-Romero, E., Márquez-Sandoval, Y. F., Cerpa-Cruz, S., & De la Cruz-Mosso, U. (2021). Association of high Calcitriol serum levels and its hydroxylation efficiency ratio with disease risk in SLE patients with vitamin D deficiency. Journal of Immunology Research, 2021, 1-16. https://doi.org/10.1155/2021/2808613
Janoušek, J., Pila?ová, V., Macáková, K., Nomura, A., Veiga-Matos, J., Silva, D. D., Remião, F., Saso, L., Malá-Ládová, K., Malý, J., Nováková, L., & Mlad?nka, P. (2022). Vitamin D: Sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Critical Reviews in Clinical Laboratory Sciences, 59(8), 517-554. https://doi.org/10.1080/10408363.2022.2070595
Arshad, R., Sameen, A., Murtaza, M. A., Sharif, H. R., Iahtisham?Ul?Haq, Dawood, S., Ahmed, Z., Nemat, A., & Manzoor, M. F. (2022). Impact of vitamin D on maternal and fetal health: A review. Food Science & Nutrition, 10(10), 3230-3240. https://doi.org/10.1002/fsn3.2948
Aspell, N., Lawlor, B., & O'Sullivan, M. (2017). Is there a role for vitamin D in supporting cognitive function as we age? Proceedings of the Nutrition Society, 77(2), 124-134. https://doi.org/10.1017/s0029665117004153
Buckinx, F., & Aubertin-Leheudre, M. (2020). Nutrition to prevent or treat cognitive impairment in older adults: A GRADE recommendation. The Journal of Prevention of Alzheimer's Disease, 1-7. https://doi.org/10.14283/jpad.2020.40
Kocot, J., Luchowska-Kocot, D., Kie?czykowska, M., Musik, I., & Kurzepa, J. (2017). Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients, 9(7), 659. https://doi.org/10.3390/nu9070659
Goto, S., Kojima, N., Komori, M., Kawade, N., Oshima, K., Nadano, D., Sasaki, N., Horio, F., Matsuda, T., & Miyata, S. (2024). Vitamin C deficiency alters the transcriptome of the rat brain in a glucocorticoid-dependent Manner, leading to microglial activation and reduced neurogenesis. The Journal of Nutritional Biochemistry, 128, 109608. https://doi.org/10.1016/j.jnutbio.2024.109608
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of Toxicology, 97(10), 2499-2574. https://doi.org/10.1007/s00204-023-03562-9
Salvagno, M., Sterchele, E. D., Zaccarelli, M., Mrakic-Sposta, S., Welsby, I. J., Balestra, C., & Taccone, F. S. (2024). Oxidative stress and cerebral vascular tone: The role of reactive oxygen and nitrogen species. International Journal of Molecular Sciences, 25(5), 3007. https://doi.org/10.3390/ijms25053007
Kulaszy?ska, M., Kwiatkowski, S., & Skonieczna-?ydecka, K. (2024). The iron metabolism with a specific focus on the functioning of the nervous system. Biomedicines, 12(3), 595. https://doi.org/10.3390/biomedicines12030595
Haynes, R. L., Kinney, H. C., & Volpe, J. J. (2025). Myelination events. Volpe's Neurology of the Newborn, 199-210.e4. https://doi.org/10.1016/b978-0-443-10513-5.00008-5
Saeed, K., Ismail, M., Toor, S. I., Nisar, T., Sattar, M. A., Akhtar, S., ... & Hassan, F. Nutraceuticals in Child Brain Development. Complementary and Alternative Medicine: Feed Additives, 201.
Polanska, K., Hanke, W., Krol, A., Gromadzinska, J., Kuras, R., Janasik, B., Wasowicz, W., Mirabella, F., Chiarotti, F., & Calamandrei, G. (2017). Micronutrients during pregnancy and child psychomotor development: Opposite effects of zinc and selenium. Environmental Research, 158, 583-589. https://doi.org/10.1016/j.envres.2017.06.037
Willekens, J., & Runnels, L. W. (2022). Impact of zinc transport mechanisms on embryonic and brain development. Nutrients, 14(12), 2526. https://doi.org/10.3390/nu14122526
Rezazadegan, M., Shahdadian, F., Soheilipour, M., Tarrahi, M. J., & Amani, R. (2022). Zinc nutritional status, mood states and quality of life in diarrhea-predominant irritable bowel syndrome: A case-control study. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15080-2
Liu, X., Adamo, A. M., & Oteiza, P. I. (2022). Di-2-ethylhexyl phthalate affects zinc metabolism and neurogenesis in the developing rat brain. Archives of Biochemistry and Biophysics, 727, 109351. https://doi.org/10.1016/j.abb.2022.109351
Camilli, M. P., Kadri, S. M., Alvarez, M. V., Ribolla, P. E., & Orsi, R. O. (2022). Zinc supplementation modifies brain tissue transcriptome of apis mellifera honeybees. BMC Genomics, 23(1). https://doi.org/10.1186/s12864-022-08464-1
Khayat, S. (2017). Minerals in pregnancy and lactation: A review article. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/jcdr/2017/28485.10626
Sun, R., Wang, J., Feng, J., & Cao, B. (2022). Zinc in cognitive impairment and aging. Biomolecules, 12(7), 1000. https://doi.org/10.3390/biom12071000
Mattei, D., & Pietrobelli, A. (2019). Micronutrients and brain development. Current Nutrition Reports, 8(2), 99-107. https://doi.org/10.1007/s13668-019-0268-z
Forouzesh, A., Forouzesh, F., Samadi Foroushani, S., & Forouzesh, A. (2022). A new method for calculating sodium content and determining appropriate sodium levels in foods. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4133574
Kumar, A., Mehan, S., Tiwari, A., Khan, Z., Gupta, G. D., Narula, A. S., & Samant, R. (2024). Magnesium (Mg2+): Essential mineral for neuronal health: From cellular biochemistry to cognitive health and behavior regulation. Current Pharmaceutical Design, 30(39), 3074-3107. https://doi.org/10.2174/0113s7M41w9JVsyHiPrZdVR4piDtgAzizj1
Patel, V., Akimbekov, N. S., Grant, W. B., Dean, C., Fang, X., & Razzaque, M. S. (2024). Neuroprotective effects of magnesium: Implications for neuroinflammation and cognitive decline. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1406455
Lingam, I., & Robertson, N. J. (2018). Magnesium as a Neuroprotective agent: A review of its use in the fetus, term infant with neonatal encephalopathy, and the adult stroke patient. Developmental Neuroscience, 40(1), 1-12. https://doi.org/10.1159/000484891
Xu, Z., Li, L., Bao, J., Wang, Z., Zeng, J., Liu, E., Li, X., Huang, R., Gao, D., Li, M., Zhang, Y., Liu, G., & Wang, J. (2014). Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer's model. PLoS ONE, 9(9), e108645. https://doi.org/10.1371/journal.pone.0108645
Nechifor, M. (2024). Magnesium involvement in social behavior and in the treatment of some psychological disorders. A review. Journal of Trace Elements and Minerals, 10, 100194. https://doi.org/10.1016/j.jtemin.2024.100194
Makris, A. P., Karianaki, M., Tsamis, K. I., & Paschou, S. A. (2020). The role of the gut-brain axis in depression: Endocrine, neural, and immune pathways. Hormones, 20(1), 1-12. https://doi.org/10.1007/s42000-020-00236-4
Gorzelanna, Z., & Miszczak, M. (2024). Through the intestines to the head? That is, how the gastrointestinal microbiota affects the behavior of companion animals. Pets, 1(3), 201-215. https://doi.org/10.3390/pets1030015
Yousef, P., Rosen, J., & Shapiro, C. (2024). Tryptophan and its role in sleep and mood. Studies in Natural Products Chemistry, 1-14. https://doi.org/10.1016/b978-0-443-15589-5.00001-3
Jao, Y., Chao, Y., Chan, J., & Hsu, Y. H. (2024). Mass spectrometry analysis of neurotransmitter shifting during neurogenesis and Neurodegeneration of PC12 cells. International Journal of Molecular Sciences, 25(19), 10399. https://doi.org/10.3390/ijms251910399
Cortés-Albornoz, M. C., García-Guáqueta, D. P., Velez-van-Meerbeke, A., & Talero-Gutiérrez, C. (2021). Maternal nutrition and Neurodevelopment: A scoping review. Nutrients, 13(10), 3530. https://doi.org/10.3390/nu13103530
Prado, E. L., & Dewey, K. G. (2014). Nutrition and brain development in early life. Nutrition Reviews, 72(4), 267-284. https://doi.org/10.1111/nure.12102
Lv, S., Qin, R., Jiang, Y., Lv, H., Lu, Q., Tao, S., Huang, L., Liu, C., Xu, X., Wang, Q., Li, M., Li, Z., Ding, Y., Song, C., Jiang, T., Ma, H., Jin, G., Xia, Y., Wang, Z., … Hu, Z. (2022). Association of maternal dietary patterns during gestation and offspring Neurodevelopment. Nutrients, 14(4), 730. https://doi.org/10.3390/nu14040730
Fang, X. (2020). Impact of Bioactive Compounds on Neurocognitive Development and Metabolism (Doctoral dissertation, University of Georgia).
Leyrolle, Q., Decoeur, F., Briere, G., Amadieu, C., Quadros, A. R., Voytyuk, I., Lacabanne, C., Benmamar-Badel, A., Bourel, J., Aubert, A., Sere, A., Chain, F., Schwendimann, L., Matrot, B., Bourgeois, T., Grégoire, S., Leblanc, J. G., De Moreno De Leblanc, A., Langella, P., … Nadjar, A. (2020). Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology, 46(3), 579-602. https://doi.org/10.1038/s41386-020-00793-7
Horn, J., Mayer, D. E., Chen, S., & Mayer, E. A. (2022). Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Translational Psychiatry, 12(1). https://doi.org/10.1038/s41398-022-01922-0
Marx, W., Moseley, G., Berk, M., & Jacka, F. (2017). Nutritional psychiatry: The present state of the evidence. Proceedings of the Nutrition Society, 76(4), 427-436. https://doi.org/10.1017/s0029665117002026
Chauhan, A., & Chauhan, V. (2020). Beneficial effects of walnuts on cognition and brain health. Nutrients, 12(2), 550. https://doi.org/10.3390/nu12020550
Hosseini Adarmanabadi, S. M., Karami Gilavand, H., Taherkhani, A., Sadat Rafiei, S. K., Shahrokhi, M., Faaliat, S., Biabani, M., Abil, E., Ansari, A., Sheikh, Z., Poudineh, M., Khalaji, A., ShojaeiBaghini, M., Koorangi, A., & Deravi, N. (2023). Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neuroscience Reports, 14, 1-20. https://doi.org/10.1016/j.ibneur.2022.10.015
Poulose, S. M., Miller, M. G., & Shukitt-Hale, B. (2014). Role of walnuts in maintaining brain health with age. The Journal of Nutrition, 144(4), 561S-566S. https://doi.org/10.3945/jn.113.184838
Tucker, K. L. (2016). Nutrient intake, nutritional status, and cognitive function with aging. Annals of the New York Academy of Sciences, 1367(1), 38-49. https://doi.org/10.1111/nyas.13062
Hess, J. M., Jonnalagadda, S. S., & Slavin, J. L. (2015). Dairy foods: Current evidence of their effects on bone, Cardiometabolic, cognitive, and digestive health. Comprehensive Reviews in Food Science and Food Safety, 15(2), 251-268. https://doi.org/10.1111/1541-4337.12183
Ni, J., Nishi, S. K., Babio, N., Martínez?González, M. A., Corella, D., Castañer, O., Martínez, J. A., Alonso?Gómez, Á. M., Gómez?Gracia, E., Vioque, J., Romaguera, D., López?Miranda, J., Estruch, R., Tinahones, F. J., Lapetra, J., Serra?Majem, J. L., Bueno?Cavanillas, A., Tur, J. A., & Martín?Sánchez, V. (2022). Dairy product consumption and changes in cognitive performance: Two?year analysis of the PREDIMED?plus cohort. Molecular Nutrition & Food Research, 66(14). https://doi.org/10.1002/mnfr.202101058
RM, M. G., AI, J. O., AM, L. S., & Ortega, R. M. (2018). Nutrition strategies that improve cognitive function. Nutrición hospitalaria, 35(Spec No6), 16-19.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.