Nanoparticles in Drug Delivery Systems: Challenges, Innovations, And Surface Modification for Targeted Therapeutics

Authors

  • Tasawar Abbas Khwaja Fareed University of Engineering & Information Technology (KFUEIT), Rahim Yar Khan, Punjab, Pakistan.
  • Fatima Kanwar Bahauddin Zakariya University, Multan, Punjab, Pakistan.
  • Hazima Tariq University of Sialkot, Sialkot, Punjab, Pakistan.
  • Muhammad Raza Malik University of the Punjab, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.507

Abstract

Nanoparticles have become a transforming platform in drug delivery systems. Their remarkable advancement over traditional methods builds upon an improvement in bioavailability, stability, and controlled delivery of therapeutic agents. Here, we discuss the broad spectrum of potential in nanoparticle-based drug delivery systems. Challenges, innovations, and the surface modification strategies that affect their clinical translation are discussed. Notwithstanding the potential they present, challenges including biocompatibility, toxicity, stability, and targeting efficiency persist in restricting their extensive utilization. The review emphasizes recent advancements, including stimuli-responsive nanoparticles, which provide controlled drug release in reaction to environmental triggers, as well as targeted drug delivery, which facilitates the selective accumulation of therapeutic agents at designated sites of disease. Besides, surface modification techniques, such as PEGylation, ligand conjugation, and charge modulation, have been highly promising in improving the stability of nanoparticles, reducing immunogenicity, and enhancing cellular uptake. The future drug delivery systems that are based on nanoparticles will address these challenges through new innovations in nanoparticle design to effect more targeted and effective treatments. While research advances, nanoparticle-based systems are likely to bring revolution in personalized medicine, tailoring medical therapy for different diseases with minimal side effects and better patient outcomes.

Downloads

Download data is not yet available.

References

Juillerat‐Jeanneret, L., & Schmitt, F. (2006). Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: Looking for the grail. Medicinal Research Reviews, 27(4), 574-590. https://doi.org/10.1002/med.20086

Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., Wu, M., Wang, L., Sun, T., Li, N., Han, L., Shi, J., Huang, Y., Guo, W., Peng, S., Zhou, W., & Gao, H. (2023). Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 34(2), 107518. https://doi.org/10.1016/j.cclet.2022.05.032

Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2020). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2), 101-124. https://doi.org/10.1038/s41573-020-0090-8

Jiang, W., Kim, B. Y., Rutka, J. T., & Chan, W. C. (2007). Advances and challenges of nanotechnology-based drug delivery systems. Expert Opinion on Drug Delivery, 4(6), 621-633. https://doi.org/10.1517/17425247.4.6.621

Afzal, O., Altamimi, A. S., Nadeem, M. S., Alzarea, S. I., Almalki, W. H., Tariq, A., Mubeen, B., Murtaza, B. N., Iftikhar, S., Riaz, N., & Kazmi, I. (2022). Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials, 12(24), 4494. https://doi.org/10.3390/nano12244494

Vasir, J., Reddy, M., & Labhasetwar, V. (2005). Nanosystems in drug targeting: Opportunities and challenges. Current Nanoscience, 1(1), 47-64. https://doi.org/10.2174/1573413052953110

Reddy, K. T., & Reddy, A. S. (2025). Recent breakthroughs in drug delivery systems for targeted cancer therapy: An overview. Cellular, Molecular and Biomedical Reports, 5(1), 13-27. https://doi.org/10.55705/cmbr.2025.456494.1246

Kumar, A., Zhang, X., & Liang, X. (2013). Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnology Advances, 31(5), 593-606. https://doi.org/10.1016/j.biotechadv.2012.10.002

Chandrakala, V., Aruna, V., & Angajala, G. (2022). Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Materials, 5(6), 1593-1615. https://doi.org/10.1007/s42247-021-00335-x

Mirza, Z., & Karim, S. (2021). Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Seminars in Cancer Biology, 69, 226-237. https://doi.org/10.1016/j.semcancer.2019.10.020

Yih, T., & Al‐Fandi, M. (2006). Engineered nanoparticles as precise drug delivery systems. Journal of Cellular Biochemistry, 97(6), 1184-1190. https://doi.org/10.1002/jcb.20796

Sosnik, A., & Augustine, R. (2016). Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Advanced Drug Delivery Reviews, 103, 105-120. https://doi.org/10.1016/j.addr.2015.12.022

Singh, D. (2024). Organelle targeted drug delivery: Key challenges, recent Advancementsand therapeutic implications. Endocrine, Metabolic & Immune Disorders - Drug Targets, 24(13), 1480-1487. https://doi.org/10.2174/0118715303282573240112104035

Sur, S., Rathore, A., Dave, V., Reddy, K. R., Chouhan, R. S., & Sadhu, V. (2019). Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects, 20, 100397. https://doi.org/10.1016/j.nanoso.2019.100397

Zakaria, M. M., Alzayed, K. S. M., Meashi, A. I., Al Ghamdi, S. A., Almowaled, S. S. S., Alnakhly, A. A., ... & Fadaaq, M. A. (2023). Revolutionizing Drug Delivery: Innovations And Challenges In Nanotechnology. Journal of Namibian Studies: History Politics Culture, 38, 1786-1797.

Singh, R., & Lillard, J. W. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004

Manzari, M. T., Shamay, Y., Kiguchi, H., Rosen, N., Scaltriti, M., & Heller, D. A. (2021). Targeted drug delivery strategies for precision medicines. Nature Reviews Materials, 6(4), 351-370. https://doi.org/10.1038/s41578-020-00269-6

Jain, K. K. (2019). An overview of drug delivery systems. Methods in Molecular Biology, 1-54. https://doi.org/10.1007/978-1-4939-9798-5_1

Paul, W., & Sharma, C. P. (2020). Inorganic nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials, 333-373. https://doi.org/10.1016/b978-0-08-102680-9.00013-5

Bamrungsap, S., Zhao, Z., Chen, T., Wang, L., Li, C., Fu, T., & Tan, W. (2012). Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine, 7(8), 1253-1271. https://doi.org/10.2217/nnm.12.87

Akhtar, A., Andleeb, A., Waris, T. S., Bazzar, M., Moradi, A., Awan, N. R., & Yar, M. (2021). Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. Journal of Controlled Release, 330, 1152-1167. https://doi.org/10.1016/j.jconrel.2020.11.021

Kumar Sarella, P. N., Vegi, S., Kumari Vendi, V., Kumar Vipparthi, A., & Valluri, S. (2024). Exploring Aquasomes: A promising frontier in nanotechnology-based drug delivery. Asian Journal of Pharmaceutical Research, 153-161. https://doi.org/10.52711/2231-5691.2024.00026

Al Tahan, M. A., & Al Tahan, S. (2024). Pioneering advances and innovative applications of Mesoporous carriers for mitochondria-targeted therapeutics. British Journal of Biomedical Science, 81. https://doi.org/10.3389/bjbs.2024.13707

Priya, S., Desai, V. M., & Singhvi, G. (2022). Surface modification of lipid-based Nanocarriers: A potential approach to enhance targeted drug delivery. ACS Omega, 8(1), 74-86. https://doi.org/10.1021/acsomega.2c05976

Cojocaru, E., Petriș, O. R., & Cojocaru, C. (2024). Nanoparticle-based drug delivery systems in inhaled therapy: Improving respiratory medicine. Pharmaceuticals, 17(8), 1059. https://doi.org/10.3390/ph17081059

Faraji, A. H., & Wipf, P. (2009). Nanoparticles in cellular drug delivery. Bioorganic & Medicinal Chemistry, 17(8), 2950-2962. https://doi.org/10.1016/j.bmc.2009.02.043

Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L., Nair, M. P., & Verma, H. K. (2021). Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology, 63, 102487. https://doi.org/10.1016/j.jddst.2021.102487

Shah, S. S., Shaikh, M. N., Khan, M. Y., Alfasane, M. A., Rahman, M. M., & Aziz, M. A. (2021). Present status and future prospects of jute in nanotechnology: A review. The Chemical Record, 21(7), 1631-1665. https://doi.org/10.1002/tcr.202100135

Kakde, D., Jain, D., Shrivastava, V., Kakde, R., & Patil, A. T. (2011). Cancer therapeutics-opportunities, challenges and advances in drug delivery. Journal of Applied Pharmaceutical Science, (Issue), 01-10. https://japsonline.com/abstract.php?article_id=252

Babu, A., Templeton, A. K., Munshi, A., & Ramesh, R. (2013). Nanoparticle‐based drug delivery for therapy of lung cancer: Progress and challenges. Journal of Nanomaterials, 2013(1). https://doi.org/10.1155/2013/863951

Watermann, A., & Brieger, J. (2017). Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials, 7(7), 189. https://doi.org/10.3390/nano7070189

Naser, I. H., Zaid, M., Ali, E., Jabar, H. I., Mustafa, A. N., Alubiady, M. H., Ramadan, M. F., Muzammil, K., Khalaf, R. M., Jalal, S. S., Alawadi, A. H., & Alsalamy, A. (2023). Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. Naunyn-Schmiedeberg's Archives of Pharmacology, 397(6), 3747-3770. https://doi.org/10.1007/s00210-023-02885-9

Parveen, S., Misra, R., & Sahoo, S. K. (2017). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine in Cancer, 47-98. https://doi.org/10.1201/b22358-3

Harishchandra, V. B. Nanoparticle Applications in Drug Delivery: Progression, Hurdles, and Prospects.

Servatan, M., Zarrintaj, P., Mahmodi, G., Kim, S., Ganjali, M. R., Saeb, M. R., & Mozafari, M. (2020). Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discovery Today, 25(4), 642-656. https://doi.org/10.1016/j.drudis.2020.02.005

Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers, 15(7), 1596. https://doi.org/10.3390/polym15071596

Gote, V., Sikder, S., Sicotte, J., & Pal, D. (2019). Ocular Drug Delivery: Present Innovations and Future Challenges. Journal of Pharmacology and Experimental Therapeutics, 370(3), 602–624. https://doi.org/10.1124/jpet.119.256933

Chang, D., Gao, Y., Wang, L., Liu, G., Chen, Y., Wang, T., Tao, W., Mei, L., Huang, L., & Zeng, X. (2016). Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. Journal of Colloid and Interface Science, 463, 279–287. https://doi.org/10.1016/j.jcis.2015.11.001

Acharya, B., Behera, A., Behera, S., & Moharana, S. (2024). Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS Applied Bio Materials, 7(3), 1336–1361. https://doi.org/10.1021/acsabm.3c01064

Khan, M. I., Hossain, M. I., Hossain, M. K., Rubel, M. H. K., Hossain, K. M., Mahfuz, A. M. U. B., & Anik, M. I. (2022). Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS Applied Bio Materials, 5(3), 971–1012. https://doi.org/10.1021/acsabm.2c00002

Alavi, S. E., Alharthi, S., Alavi, S. Z., Raza, A., & Shahmabadi, H. E. (2024). Bioresponsive drug delivery systems. Drug Discovery Today, 29(1), 103849–103849. https://doi.org/10.1016/j.drudis.2023.103849

Sonowal, L., & Gautam, S. (2024). Advancements and challenges in carbon nanotube-based drug delivery systems. Nano-Structures & Nano-Objects, 38, 101117. https://doi.org/10.1016/j.nanoso.2024.101117

Honmane, S. M., Charde, M. S., Salunkhe, S. S., Choudhari, P. B., & Nangare, S. N. (2022). Polydopamine surface-modified nanocarriers for improved anticancer activity: Current progress and future prospects. OpenNano, 7, 100059. https://doi.org/10.1016/j.onano.2022.100059

Gupta, J., & Sharma, G. (2024). Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-024-01684-w

Nayak, D., Rathnanand, M., & Tippavajhala, V. K. (2024). Navigating Skin Delivery Horizon: An Innovative Approach in Pioneering Surface Modification of Ultradeformable Vesicles. AAPS PharmSciTech, 25(5). https://doi.org/10.1208/s12249-024-02847-1

Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3(1). https://doi.org/10.1038/s41392-017-0004-3

Bala, I., Hariharan, S., & Kumar, M. R. (2004). PLGA Nanoparticles in Drug Delivery: The State of the Art; Critical Reviews in Therapeutic Drug Carrier Systems, 21(5), 387–422. https://doi.org/10.1615/critrevtherdrugcarriersyst.v21.i5.20

Dachani, S. R., Vashi, A., Mundada, A. B., Mundada, P. A., Ravi, S., Rudrangi, S., & Tiwari, R. (2024). “Innovative Polymers in Pharmaceutical Chemistry: Revolutionizing Drug Delivery Systems.” Polymer-Plastics Technology and Materials, 1–23. https://doi.org/10.1080/25740881.2024.2440531

Theivendren, P., Kunjiappan, S., Pavadai, P., Ravi, K., Murugavel, A., Dayalan, A., & Santhana Krishna Kumar, A. (2024). Revolutionizing Cancer Immunotherapy: Emerging Nanotechnology-Driven Drug Delivery Systems for Enhanced Therapeutic Efficacy. ACS Measurement Science Au. https://doi.org/10.1021/acsmeasuresciau.4c00062

Pissuwan, D., Niidome, T., & Cortie, M. B. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 149(1), 65–71. https://doi.org/10.1016/j.jconrel.2009.12.006

Lorscheider, M., Gaudin, A., Nakhlé, J., Veiman, K.-L., Richard, J., & Chassaing, C. (2020). Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Therapeutic Delivery, 12(1). https://doi.org/10.4155/tde-2020-0079

Katz, J. S., Chou, D. K., Christian, T. R., Das, T. K., Patel, M. M., Singh, S. N., & Wen, Y. (2022). Emerging Challenges and Innovations in Surfactant-mediated Stabilization of Biologic Formulations. Journal of Pharmaceutical Sciences, 111(4), 919–932. https://doi.org/10.1016/j.xphs.2021.12.002

Jyothika, M., Gowda, S. M., Kumar, G. B., Rakshitha, K. B., Srikruthi, K. S., Goudanavar, P., & Naveen, N. R. (2024). Innovative polymer modifications: Unlocking new horizons in drug delivery applications. Biomedical Materials & Devices. https://doi.org/10.1007/s44174-024-00258-1

Puttasiddaiah, R., Basavegowda, N., Lakshmanagowda, N. K., Raghavendra, V. B., Sagar, N., Sridhar, K., Dikkala, P. K., Bhaswant, M., Baek, K., & Sharma, M. (2025). Emerging nanoparticle-based diagnostics and therapeutics for cancer: Innovations and challenges. Pharmaceutics, 17(1), 70. https://doi.org/10.3390/pharmaceutics17010070

Alcantara, K. P., Malabanan, J. W., Vajragupta, O., Rojsitthisak, P., & Rojsitthisak, P. (2024). A promising strategy of surface-modified nanoparticles targeting CXCR4 for precision cancer therapy. Journal of Drug Targeting, 32(6), 587-605. https://doi.org/10.1080/1061186x.2024.2345235

Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of Nanoparticulate Nanomedicines: Pathways for translational development and commercialization. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00790

Lim, E., Kim, T., Paik, S., Haam, S., Huh, Y., & Lee, K. (2014). Nanomaterials for Theranostics: Recent advances and future challenges. Chemical Reviews, 115(1), 327-394. https://doi.org/10.1021/cr300213b

Kaymaz, S. V., Nobar, H. M., Sarıgül, H., Soylukan, C., Akyüz, L., & Yüce, M. (2023). Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Advances in Colloid and Interface Science, 322, 103035. https://doi.org/10.1016/j.cis.2023.103035

Hamdy, N. M., Basalious, E. B., El-Sisi, M. G., Nasr, M., Kabel, A. M., Nossier, E. S., & Abadi, A. H. (2024). Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: A step-toward personalized medicine. Current Medical Research and Opinion, 40(11), 1943-1961. https://doi.org/10.1080/03007995.2024.2416985

Comanescu, C. (2023). Recent advances in surface Functionalization of magnetic nanoparticles. Coatings, 13(10), 1772. https://doi.org/10.3390/coatings13101772

Desai, N. (2012). Challenges in development of nanoparticle-based therapeutics. The AAPS Journal, 14(2), 282-295. https://doi.org/10.1208/s12248-012-9339-4

Khawas, S. (2024). Innovations in Nanocarrier technology for targeted therapeutics: A comprehensive review. Revista Electronica de Veterinaria, 1076-1089. https://doi.org/10.69980/redvet.v25i1.780

Khot, S., Krishnaveni, A., Gharat, S., Momin, M., Bhavsar, C., & Omri, A. (2024). Innovative drug delivery strategies for targeting glioblastoma: Overcoming the challenges of the tumor microenvironment. Expert Opinion on Drug Delivery, 21(12), 1837-1857. https://doi.org/10.1080/17425247.2024.2429702

Esmaeili, S. (2023). Innovations in Surface Modification Techniques: Advancing Hydrophilictextit {LiYF $ _ {4} $: Yb, Er, Tm} Upconversion Nanoparticles and Their Applications. https://doi.org/10.1021/acsanm.2c03681.s002

Javanmard, Z., Pourhajibagher, M., & Bahador, A. (2024). Advancing anti‐biofilm strategies: Innovations to combat biofilm‐related challenges and enhance efficacy. Journal of Basic Microbiology, 64(12). https://doi.org/10.1002/jobm.202400271

Sechi, M., Sanna, V., & Pala, N. (2014). Targeted therapy using nanotechnology: Focus on cancer. International Journal of Nanomedicine, 467. https://doi.org/10.2147/ijn.s36654

Chehelgerdi, M., Chehelgerdi, M., Allela, O. Q., Pecho, R. D., Jayasankar, N., Rao, D. P., Thamaraikani, T., Vasanthan, M., Viktor, P., Lakshmaiya, N., Saadh, M. J., Amajd, A., Abo-Zaid, M. A., Castillo-Acobo, R. Y., Ismail, A. H., Amin, A. H., & Akhavan-Sigari, R. (2023). Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Molecular Cancer, 22(1). https://doi.org/10.1186/s12943-023-01865-0

Dong, C., Yu, X., Jin, K., & Qian, J. (2023). Overcoming brain barriers through surface-functionalized liposomes for glioblastoma therapy; Current status, challenges and future perspective. Nanomedicine, 18(30), 2161-2184. https://doi.org/10.2217/nnm-2023-0172

Parsai, H. (2024). The Role of Nanotechnology in Drug Delivery: Innovations in Molecular Therapeutics. Multidisciplinary Journal of Molecular Biology and Biochemistry, 1(1), 49-56. https://www.researchcorridor.org/index.php/mjmbb/article/view/127

Vargas, R., Lizano-Barrantes, C., Romero, M., Valencia-Clua, K., Narváez-Narváez, D. A., Suñé-Negre, J. M., Pérez-Lozano, P., García-Montoya, E., Martinez-Martinez, N., Hernández-Munain, C., Suñé, C., & Suñé-Pou, M. (2024). The piper at the gates of brain: A systematic review of surface modification strategies on lipid nanoparticles to overcome the blood-brain-Barrier. International Journal of Pharmaceutics, 665, 124686. https://doi.org/10.1016/j.ijpharm.2024.124686

Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer Journal, 11(4). https://doi.org/10.1038/s41408-021-00459-7

Vishvakarma, P., Kumari, R., Vanmathi, S. M., Devi Korni, R., Bhattacharya, V., E. Jesudasan, R., & Mandal, S. (2023). Oral delivery of peptide and protein therapeutics: Challenges and strategies. Journal of Experimental Zoology India, 26(2). https://doi.org/10.51470/jez.2023.26.2.2301

Sawant, R. R., & Torchilin, V. P. (2012). Challenges in development of targeted liposomal therapeutics. The AAPS Journal, 14(2), 303-315. https://doi.org/10.1208/s12248-012-9330-0

Ejeta, B. M., Das, M. K., & Das, S. (2024). Recent Advances in Paclitaxel Drug Delivery: Challenges, Innovations, and Future Directions. Journal of Angiotherapy, 8(8), 1-13. https://doi.org/10.25163/angiotherapy.889867

Pandya, S. R., Singh, H., Desimone, M. F., Singh, J., George, N., & Jasani, S. (2024). Circumventing challenges in mitochondrial targeting for cancer treatment: Leveraging nanoplatforms for effective solutions. Materials Advances, 5(2), 409-431. https://doi.org/10.1039/d3ma00629h

Iravani, S., & Varma, R. S. (2021). MXenes for cancer therapy and diagnosis: Recent advances and current challenges. ACS Biomaterials Science & Engineering, 7(6), 1900-1913. https://doi.org/10.1021/acsbiomaterials.0c01763

Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1). https://doi.org/10.1186/s40580-019-0193-2

Farokhi, S., Razavi, Z., Mavaei, M., Shadab, A., Afkhami, H., & Sardarabadi, H. (2024). New perspectives on arteriosclerosis treatment using nanoparticles and mesenchymal stem cells. Discover Applied Sciences, 6(8). https://doi.org/10.1007/s42452-024-06113-8

Brown, K. A., Melby, J. A., Roberts, D. S., & Ge, Y. (2020). Top-down proteomics: Challenges, innovations, and applications in basic and clinical research. Expert Review of Proteomics, 17(10), 719-733. https://doi.org/10.1080/14789450.2020.1855982

Agrawal, S. S., Baliga, V., & Londhe, V. Y. (2024). Liposomal formulations: A recent update. Pharmaceutics, 17(1), 36. https://doi.org/10.3390/pharmaceutics17010036

Kumari, S., Raj, S., Babu, M. A., Bhatti, G. K., & Bhatti, J. S. (2023). Antibody-drug conjugates in cancer therapy: Innovations, challenges, and future directions. Archives of Pharmacal Research, 47(1), 40-65. https://doi.org/10.1007/s12272-023-01479-6

Anwarkhan, S., Koilpillai, J., & Narayanasamy, D. (2024). Utilizing multifaceted approaches to target drug delivery in the brain: From nanoparticles to biological therapies. Cureus. https://doi.org/10.7759/cureus.68419

Rajan, S. S., Chandran, R., & Abrahamse, H. (2024). Overcoming challenges in cancer treatment: Nano‐enabled photodynamic therapy as a viable solution. WIREs Nanomedicine and Nanobiotechnology, 16(1). https://doi.org/10.1002/wnan.1942

Kashyap, B. K., Singh, V. V., Solanki, M. K., Kumar, A., Ruokolainen, J., & Kesari, K. K. (2023). Smart nanomaterials in cancer Theranostics: Challenges and opportunities. ACS Omega, 8(16), 14290-14320. https://doi.org/10.1021/acsomega.2c07840

Souto, E. B., Blanco-Llamero, C., Krambeck, K., Kiran, N. S., Yashaswini, C., Postwala, H., Severino, P., Priefer, R., Prajapati, B. G., & Maheshwari, R. (2024). Regulatory insights into nanomedicine and gene vaccine innovation: Safety assessment, challenges, and regulatory perspectives. Acta Biomaterialia, 180, 1-17. https://doi.org/10.1016/j.actbio.2024.04.010

Downloads

Published

2025-01-15

How to Cite

Nanoparticles in Drug Delivery Systems: Challenges, Innovations, And Surface Modification for Targeted Therapeutics. (2025). Indus Journal of Bioscience Research, 3(1), 325-336. https://doi.org/10.70749/ijbr.v3i1.507