Advances in Liquid Biopsy for Early Detection and Monitoring of Pancreatic Cancer
DOI:
https://doi.org/10.70749/ijbr.v3i1.575Keywords:
Liquid Biopsy, Pancreatic Cancer, Circulating Tumor DNA (ctDNA), Circulating Tumor Cells (CTCs),, Exosomes, Early Detection, Real-time Monitoring, Personalized Medicine,, Next-generation Sequencing (NGS), Biomarker DiscoveryAbstract
Pancreatic cancer is a rather aggressive form of malignancy. It characteristically presents at an advanced stage and progresses aggressively. The liquid biopsy has revolutionized the diagnosis and monitoring approach. The present review provides details on current progress, clinical utility, and the challenge in applying the method for managing pancreatic cancer. These can shed light on tumor biology, molecular changes, and treatment responses with the examination of tumor-derived fluids like ctDNA, CTCs, and exosomes. Among the technologies which could enhance sensitivity and specificity to make this a more viable test for early detection and real-time monitoring are next-generation sequencing and microfluidics and other highly advanced exosome isolation techniques. Such clinical studies have only revealed recent times that liquid biopsy is indeed useful in the detection of hallmark mutations, such as KRAS and TP53, prognosis assessment, and therapeutic efficacy monitoring. Recent trends in multi-omics integration and artificial intelligence-driven biomarker discovery as well as liquid biopsy-based developing point-of-care diagnostic devices highlight the potential of revolutionizing personalized medicine. Despite its promise, some challenges that include low abundance of biomarkers, lack of standardization, and high costs characterize what limits acceptance of liquid biopsy in clinical practice. This review outlines the role which liquid biopsy can play in conquest of the challenges of diagnosis and therapy of pancreatic cancer. Concomitantly, it discusses future requirements for research, technological breakthroughs, and a collaborative attitude toward overcoming prevalent limitations. Multidisciplinary approaches in the fields of multi-omics, artificial intelligence, and scalable diagnostic tools hold the promise of enhanced early detection of pancreatic cancer and optimization of treatment strategies in the patients themselves.
Downloads
References
Alix-Panabières, C., & Pantel, K. (2021). Liquid biopsy: from discovery to clinical application. Cancer discovery, 11(4), 858-873. https://doi.org/10.1158/2159-8290.CD-20-1311
Bardelli, A., & Pantel, K. (2017). Liquid Biopsies, What We Do Not Know (Yet). Cancer Cell, 31(2), 172-179. https://doi.org/10.1016/j.ccell.2017.01.002
Bettegowda, C., Sausen, M., Leary, R. J., Kinde, I., Wang, Y., Agrawal, N., ... & Diaz Jr, L. A. (2014). Detection of circulating tumor DNA in early-and late-stage human malignancies. Science translational medicine, 6(224), 224ra24-224ra24. https://doi.org/10.1126/scitranslmed.3007094
Bidard, F. C., Peeters, D. J., Fehm, T., Nolé, F., Gisbert-Criado, R., Mavroudis, D., ... & Pierga, J. Y. (2018). Clinical application of circulating tumor cells in breast cancer: Overview of the current interventional trials. Cancer Metastasis Reviews, 37(4), 749-772. https://doi.org/10.1007/s10555-018-9774-4
Canto, M. I., Harinck, F., Hruban, R. H., Offerhaus, G. J., Poley, J.-W., Kamel, I., Nio, Y., Schulick, R. S., Bassi, C., Kluijt, I., Levy, M. J., Chak, A., Fockens, P., Goggins, M., & Bruno, M. (2013). International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut, 62(3), 339–347. https://doi.org/10.1136/gutjnl-2012-303108
Chowell, D., Morris, L. G. T., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., Riaz, N., Greenbaum, B., Carroll, J., Garon, E., Hyman, D. M., Zehir, A., Solit, D., Berger, M., Zhou, R., Rizvi, N. A., & Chan, T. A. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science (New York, N.Y.), 359(6375), 582–587. https://doi.org/10.1126/science.aao4572
Clancy, E. (2023). ACS Report Shows Prostate Cancer on the Rise, Cervical Cancer on the Decline. Renal & Urology News, NA-NA.
Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., ... & Vogelstein, B. (2017). Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 359(6378), 926-930. https://doi.org/10.1126/science.aar3247
Golan, T., Hammel, P., Reni, M., Van Cutsem, E., Macarulla, T., Hall, M. J., Park, J.-O., Hochhauser, D., Arnold, D., Oh, D.-Y., Reinacher-Schick, A., Tortora, G., Algül, H., O’Reilly, E. M., McGuinness, D., Cui, K. Y., Schlienger, K., Locker, G. Y., & Kindler, H. L. (2019). Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. New England Journal of Medicine, 381(4), 317–327. https://doi.org/10.1056/nejmoa1903387
Groot, V. P., Rezaee, N., Wu, W., Cameron, J. L., Fishman, E. K., Hruban, R. H., & Weiss, M. J. (2021). Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Annals of Surgery, 273(3), 759-765. https://doi.org/10.1097/SLA.0000000000003284
Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N., & DePinho, R. A. (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes & development, 20(10), 1218-1249.
Hidalgo, M. (2010). Pancreatic cancer. New England Journal of Medicine, 362(17), 1605-1617. https://doi.org/10.1056/NEJMra0901557
Howlader, N., Chen, H., Noone, A., Miller, D., Byrne, J., Negoita, S., Cronin, K. A., & Mariotto, A. B. (2024). Impact of COVID-19 on 2021 cancer incidence rates and potential rebound from 2020 decline. JNCI: Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/djae180
Hrstka, R., Bouchalova, P., Michalova, E., Matoulkova, E., Muller, P., Coates, P. J., & Vojtesek, B. (2015). AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10‐mediated regulatory pathway. Molecular Oncology, 10(5), 652-662. https://doi.org/10.1016/j.molonc.2015.12.003
Humphris, J., Chang, D., Johns, A., Scarlett, C., Pajic, M., Jones, M., Colvin, E., Nagrial, A., Chin, V., Chantrill, L., Samra, J., Gill, A., Kench, J., Merrett, N., Das, A., Musgrove, E., Sutherland, R., & Biankin, A. (2012). The prognostic and predictive value of serum CA19.9 in pancreatic cancer. Annals of Oncology, 23(7), 1713-1722. https://doi.org/10.1093/annonc/mdr561
Kahlert, C., Melo, S. A., Protopopov, A., Tang, J., Seth, S., Koch, M., Zhang, J., Weitz, J., Chin, L., Futreal, A., & Kalluri, R. (2014). Identification of double-stranded Genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum Exosomes of patients with pancreatic cancer. Journal of Biological Chemistry, 289(7), 3869-3875. https://doi.org/10.1074/jbc.c113.532267
Kamisawa, T., Wood, L. D., Itoi, T., & Takaori, K. (2016). Pancreatic cancer. The Lancet, 388(10039), 73-85. https://doi.org/10.1016/s0140-6736(16)00141-0
Kanda, M., Matthaei, H., Wu, J., Hong, S. M., Yu, J., Borges, M., ... & Hruban, R. H. (2012). Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Clinical Cancer Research, 18(22), 5487-5496. https://doi.org/10.1158/1078-0432.CCR-12-1215
Makohon-Moore, A., & Iacobuzio-Donahue, C. A. (2016). Pancreatic cancer biology and genetics from an evolutionary perspective. Nature Reviews Cancer, 16(9), 553-565. https://doi.org/10.1038/nrc.2016.66
Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., Torrence, M. E., Fiske, B. P., ... & Vander Heiden, M. G. (2014). Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nature Medicine, 20(10), 1193-1198. https://doi.org/10.1038/nm.3686
Melo, S. A., Luecke, L. B., Kahlert, C., Fernandez, A. F., Gammon, S. T., Kaye, J., LeBleu, V. S., Mittendorf, E. A., Weitz, J., Rahbari, N., Reissfelder, C., Pilarsky, C., Fraga, M. F., Piwnica-Worms, D., & Kalluri, R. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 523(7559), 177-182. https://doi.org/10.1038/nature14581
Mouliere, F., Chandrananda, D., Piskorz, A. M., Moore, E. K., Morris, J., Ahlborn, L. B., ... & Rosenfeld, N. (2018). Enhanced detection of circulating tumor DNA by fragment size analysis. Science Translational Medicine, 10(466), eaat4921. https://doi.org/10.1126/scitranslmed.aat4921
Rah, B., Banday, M. A., Bhat, G. R., Shah, O. J., Jeelani, H., Kawoosa, F., Yousuf, T., & Afroze, D. (2021). Evaluation of biomarkers, genetic mutations, and epigenetic modifications in early diagnosis of pancreatic cancer. World Journal of Gastroenterology, 27(36), 6093-6109. https://doi.org/10.3748/wjg.v27.i36.6093
Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014). Pancreatic adenocarcinoma. New England Journal of Medicine, 371(11), 1039-1049. https://doi.org/10.1056/NEJMra1404198
Siravegna, G., Marsoni, S., Siena, S., & Bardelli, A. (2017). Integrating liquid biopsies into the management of cancer. Nature Reviews Clinical Oncology, 14(9), 531-548. https://doi.org/10.1038/nrclinonc.2017.14
Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. The Lancet, 378(9791), 607-620. https://doi.org/10.1016/s0140-6736(10)62307-0
Visser, C. W., Kamperman, T., Karbaat, L. P., Lohse, D., & Karperien, M. (2018). In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Science Advances, 4(1). https://doi.org/10.1126/sciadv.aao1175
Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., ... & Grimmond, S. M. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), 495-501. https://doi.org/10.1038/nature14169
Wan, J. C., Massie, C., Garcia-Corbacho, J., Mouliere, F., Brenton, J. D., Caldas, C., Pacey, S., Baird, R., & Rosenfeld, N. (2017). Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nature Reviews Cancer, 17(4), 223-238. https://doi.org/10.1038/nrc.2017.7
Wang, P., Wang, Y., Hang, B., Zou, X., & Mao, J. H. (2015). A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget, 7(34), 55343-55351. https://doi.org/10.18632/oncotarget.10725
Zhou, B., Xu, J. W., Cheng, Y. G., Gao, J. Y., Hu, S. Y., Wang, L., ... & Wang, W. (2018). Early detection of pancreatic cancer: Where are we now and where are we going? International Journal of Cancer, 141(2), 231-241. https://doi.org/10.1002/ijc.30892
Zill, O. A., Greene, C., Sebisanovic, D., Siew, L. M., Leng, J., Vu, M., ... & Collisson, E. A. (2015). Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discovery, 5(10), 1040-1048. https://doi.org/10.1158/2159-8290.CD-15-0274
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.