Evolutionary Adaptations of Deep-Sea Creatures: Climate Change and Captive Fish Migration

Authors

  • Mehak Aslam Graduate School of Engineering and Science, University of the Ryukyus, Japan.
  • Hammad Hassan Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Zunnorain Ahmed Department of Zoology, University of Sargodha, Punjab, Pakistan.
  • Shakeel Ahmed Memon Department of Zoology, GC University, Hyderabad, Sindh, Pakistan.
  • Waniza Tahir Department of Biological Sciences, The Superior University, Lahore, Punjab, Pakistan.
  • Fatima Ishaq Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan.
  • Umber Rauf Veterinary Research Institute, Lahore, Punjab, Pakistan.
  • Hira Qamar Department of Wildlife and Fisheries, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan.
  • Malka Saba Bashir Department of Zoology, The Women University, Multan, Punjab, Pakistan.
  • Anum Sabir Faculty of Veterinary Sciences, University of Veterinary and Animals Sciences Lahore Sub Campus, Jhang, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.605

Keywords:

Acidification, Biodiversity Conservation, Marine Protected Areas, Deep-sea Ecosystems

Abstract

The deep sea, encompassing more than 60% of Earth's surface, constitutes one of the planet's harshest and least investigated ecosystems, inhabited by species with remarkable adaptations to high pressure, constant darkness, and limited supplies. These adaptations facilitate life in extreme environments but render deep-sea organisms particularly susceptible to the persistent effects of climate change and anthropogenic activities, such as deep-sea mining and bottom trawling. This review examines the evolutionary adaptations of deep-sea species and emphasizes their physiological, morphological, and behavioral mechanisms. It analyses the impact of climate change-related stressors, such as increasing ocean temperatures, acidification, and deoxygenation, on their survival and dispersal. Furthermore, it examines deep-sea fish's migration patterns and captive habits, emphasizing their ecological importance and conservation challenges. This study synthesizes findings from several studies to identify significant knowledge gaps, particularly concerning the long-term impacts of multiple stressors and the contribution of the deep sea to the global carbon cycle. Using an interdisciplinary approach, it proposes actionable recommendations for future research, including studies on physiological resilience and applying genomic technologies to explore adaptation mechanisms. These findings guide conservation initiatives, including establishing marine protected zones and enforcing international restrictions on deep-sea resource extraction. This study underscores the significance of conserving deep-sea biodiversity to sustain ecosystem integrity and global climate equilibrium. It establishes a basis for enhancing research and policy in this vital domain.

Downloads

Download data is not yet available.

References

Barrouin-Melo, S. M., Anturaniemi, J., Sankari, S., Griinari, M., Atroshi, F., Ounjaijean, S., & Hielm-Björkman, A. K. (2016). Evaluating oxidative stress, serological- and haematological status of dogs suffering from osteoarthritis, after supplementing their diet with fish or corn oil. Lipids in Health and Disease, 15(1). https://doi.org/10.1186/s12944-016-0304-6

Belleter, D. J., Braga, J., & Pettersen, K. Y. (2019). Experimental verification of a coordinated path-following strategy for Underactuated marine vehicles. Frontiers in Robotics and AI, 6. https://doi.org/10.3389/frobt.2019.00035

Benoist, N. M., Morris, K. J., Bett, B. J., Durden, J. M., Huvenne, V. A., Le Bas, T. P., Wynn, R. B., Ware, S. J., & Ruhl, H. A. (2019). Monitoring mosaic biotopes in a marine conservation zone by autonomous underwater vehicle. Conservation Biology, 33(5), 1174-1186. https://doi.org/10.1111/cobi.13312

Binczyk, F., Prazuch, W., Bozek, P., & Polanska, J. (2021). Radiomics and artificial intelligence in lung cancer screening. Translational Lung Cancer Research, 10(2), 1186-1199. https://doi.org/10.21037/tlcr-20-708

Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., & Weber, T. (2019). Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327-335. https://doi.org/10.1038/s41586-019-1098-2

Castillo, A., Alvarez, A., Cuzon, G., Suárez, J., & Gaxiola, G. (2017). Glycemic response after glucose oral administration of wild juvenile red grouper Epinephelus morio fed two different diets. Fish Physiology and Biochemistry, 44(1), 219-226. https://doi.org/10.1007/s10695-017-0426-4

Cheng, J., Hui, M., & Sha, Z. (2019). Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps. BMC Genomics, 20(1). https://doi.org/10.1186/s12864-019-5753-7

Collins, F. W., Walsh, C. J., Gomez-Sala, B., Guijarro-García, E., Stokes, D., Jakobsdóttir, K. B., Kristjánsson, K., Burns, F., Cotter, P. D., Rea, M. C., Hill, C., & Ross, R. P. (2021). The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut Microbes, 13(1). https://doi.org/10.1080/19490976.2021.1921924

Crowe-Riddell, J. M., Snelling, E. P., Watson, A. P., Suh, A. K., Partridge, J. C., & Sanders, K. L. (2016). The evolution of scale sensilla in the transition from land to sea in elapid snakes. Open Biology, 6(6), 160054. https://doi.org/10.1098/rsob.160054

Danovaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C., Dell’Anno, A., Gjerde, K., Jamieson, A. J., Kark, S., McClain, C., Levin, L., Levin, N., Ramirez-Llodra, E., Ruhl, H., Smith, C. R., Snelgrove, P. V., Thomsen, L., Van Dover, C. L., … Yasuhara, M. (2020). Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology & Evolution, 4(2), 181-192. https://doi.org/10.1038/s41559-019-1091-z

Danovaro, R., Molari, M., Corinaldesi, C., & Dell’Anno, A. (2016). Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Science Advances, 2(4). https://doi.org/10.1126/sciadv.1500961

De Busserolles, F., & Marshall, N. J. (2017). Seeing in the deep-sea: Visual adaptations in lanternfishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1717), 20160070. https://doi.org/10.1098/rstb.2016.0070

Doi, H., Yasuhara, M., & Ushio, M. (2021). Causal analysis of the temperature impact on deep-sea biodiversity. Biology Letters, 17(7), 20200666. https://doi.org/10.1098/rsbl.2020.0666

Freed, L. L., Easson, C., Baker, L. J., Fenolio, D., Sutton, T. T., Khan, Y., Blackwelder, P., Hendry, T. A., & Lopez, J. V. (2019). Characterization of the microbiome and bioluminescent symbionts across life stages of Ceratioid Anglerfishes of the Gulf of Mexico. FEMS Microbiology Ecology, 95(10). https://doi.org/10.1093/femsec/fiz146

Frühauf, A., Niedermeier, M., & Kopp, M. (2020). Intention to engage in winter sport in climate change affected environments. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.598297

Gan, Z., Yuan, J., Liu, X., Dong, D., Li, F., & Li, X. (2020). Comparative transcriptomic analysis of deep- and shallow-water barnacle species (Cirripedia, Poecilasmatidae) provides insights into deep-sea adaptation of sessile crustaceans. BMC Genomics, 21(1). https://doi.org/10.1186/s12864-020-6642-9

Goulet, P., Guinet, C., Campagna, C., Campagna, J., Tyack, P. L., & Johnson, M. (2020). Flash and grab: Deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey. Journal of Experimental Biology, 223(10). https://doi.org/10.1242/jeb.222810

Ham, J. Y., & Shon, Y. H. (2020). Natural magnesium-enriched deep-sea water improves insulin resistance and the lipid profile of Prediabetic adults: A randomized, double-blinded crossover trial. Nutrients, 12(2), 515. https://doi.org/10.3390/nu12020515

Hittle, K. A., Kwon, E. S., & Coughlin, D. J. (2021). Climate change and anadromous fish: How does thermal acclimation affect the mechanics of the myotomal muscle of the Atlantic salmon, Salmo salar? Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335(3), 311-318. https://doi.org/10.1002/jez.2443

Isogai, Y., Imamura, H., Nakae, S., Sumi, T., Takahashi, K., Nakagawa, T., Tsuneshige, A., & Shirai, T. (2018). Tracing whale myoglobin evolution by resurrecting ancient proteins. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-34984-6

Kang, P., Wang, Y., Li, X., Wan, Z., Wang, X., Zhu, H., Wang, C., Zhao, S., Chen, H., & Liu, Y. (2019). Effect of flaxseed oil on muscle protein loss and carbohydrate oxidation impairment in a pig model after lipopolysaccharide challenge. British Journal of Nutrition, 123(8), 859-869. https://doi.org/10.1017/s0007114519002393

Klein, E. S., Hill, S. L., Hinke, J. T., Phillips, T., & Watters, G. M. (2018). Impacts of rising sea temperature on krill increase risks for predators in the Scotia sea. PLOS ONE, 13(1), e0191011. https://doi.org/10.1371/journal.pone.0191011

Martin, N., & Gharib, M. (2018). On the role of tip curvature on flapping plates. Bioinspiration & Biomimetics, 13(2), 026001. https://doi.org/10.1088/1748-3190/aaa1c0

Masanari, M., Fujii, S., Kawahara, K., Oki, H., Tsujino, H., Maruno, T., Kobayashi, Y., Ohkubo, T., Wakai, S., & Sambongi, Y. (2016). Comparative study on stabilization mechanism of monomeric cytochrome c 5 from deep-sea piezophilic Shewanella violacea. Bioscience, Biotechnology, and Biochemistry, 80(12), 2365-2370. https://doi.org/10.1080/09168451.2016.1232155

Mu, W., Liu, J., & Zhang, H. (2018). Complete mitochondrial genome of Benthodytes marianensis (Holothuroidea: Elasipodida: Psychropotidae): Insight into deep sea adaptation in the sea cucumber. PLOS ONE, 13(11), e0208051. https://doi.org/10.1371/journal.pone.0208051

Nakaya, K., Tomita, T., Suda, K., Sato, K., Ogimoto, K., Chappell, A., Sato, T., Takano, K., & Yuki, Y. (2016). Slingshot feeding of the goblin shark Mitsukurina owstoni (Pisces: Lamniformes: Mitsukurinidae). Scientific Reports, 6(1). https://doi.org/10.1038/srep27786

Pai, V. V., & Pai, R. B. (2021). Artificial intelligence in dermatology and healthcare: An overview. Indian Journal of Dermatology, Venereology and Leprology, 0, 1-11. https://doi.org/10.25259/ijdvl_518_19

Petitjean, Q., Jacquin, L., LeHénaff, M., Perrault, A., Cousseau, M., Laffaille, P., & Jean, S. (2020). Dose‐ and time‐dependent effects of an immune challenge on fish across biological levels. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 335(2), 250-264. https://doi.org/10.1002/jez.2430

Picardi, G., Chellapurath, M., Iacoponi, S., Stefanni, S., Laschi, C., & Calisti, M. (2020). Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Science Robotics, 5(42). https://doi.org/10.1126/scirobotics.aaz1012

Ramos, A. G., García-Garrido, V. J., Mancho, A. M., Wiggins, S., Coca, J., Glenn, S., Schofield, O., Kohut, J., Aragon, D., Kerfoot, J., Haskins, T., Miles, T., Haldeman, C., Strandskov, N., Allsup, B., Jones, C., & Shapiro, J. (2018). Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-23028-8

Röthig, T., Yum, L. K., Kremb, S. G., Roik, A., & Voolstra, C. R. (2017). Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Scientific Reports, 7(1). https://doi.org/10.1038/srep44714

Tabari, M. A., Youssefi, M. R., Hosseinifard, S. M., Moghaddamnia, A. A., Kazemi, S., Sadati, N. Y., Jalali Mothahari, A., & Giorgi, M. (2020). Pharmacokinetics of levamisole after intramuscular and oral administrations to caspian salmon (Salmo trutta caspius). Journal of Veterinary Pharmacology and Therapeutics, 43(3), 276-281. https://doi.org/10.1111/jvp.12856

Tortorella, E., Tedesco, P., Palma Esposito, F., January, G. G., Fani, R., Jaspars, M., & De Pascale, D. (2018). Antibiotics from deep-sea microorganisms: Current discoveries and perspectives. Marine Drugs, 16(10), 355. https://doi.org/10.3390/md16100355

Tsutsui, K., Shimada, E., Ogawa, T., & Tsuruwaka, Y. (2016). A novel fluorescent protein from the deep-sea anemone Cribrinopsis japonica (Anthozoa: Actiniaria). Scientific Reports, 6(1). https://doi.org/10.1038/srep23493

Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L., & Arbizu, P. M. (2016). Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific Reports, 6(1). https://doi.org/10.1038/srep26808

Vereshchaka, A. L., Lunina, A. A., & Sutton, T. (2019). Assessing deep-pelagic shrimp biomass to 3000 m in the Atlantic Ocean and ramifications of Upscaled global biomass. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-42472-8

Weber, A. A., Hugall, A. F., & O’Hara, T. D. (2020). Convergent evolution and structural adaptation to the deep ocean in the protein-folding Chaperonin CCTα. Genome Biology and Evolution, 12(11), 1929-1942. https://doi.org/10.1093/gbe/evaa167

Xie, Z., Jian, H., Jin, Z., & Xiao, X. (2018). Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress. Applied and Environmental Microbiology, 84(5). https://doi.org/10.1128/aem.02342-17

Xue, Y., Ding, M. Q., & Lu, X. (2020). Learning to ENCODE cellular responses to systematic perturbations with deep generative models. npj Systems Biology and Applications, 6(1). https://doi.org/10.1038/s41540-020-00158-2

Yum, L. K., Baumgarten, S., Röthig, T., Roder, C., Roik, A., Michell, C., & Voolstra, C. R. (2017). Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05572-x

Zeng, X., Zhang, Y., Meng, L., Fan, G., Bai, J., Chen, J., Song, Y., Seim, I., Wang, C., Shao, Z., Liu, N., Lu, H., Fu, X., Wang, L., Liu, X., Liu, S., & Shao, Z. (2020). Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. GigaScience, 9(12). https://doi.org/10.1093/gigascience/giaa139

Zhang, T., Shi, H., Chen, L., Li, Y., & Tong, J. (2016). AUV positioning method based on tightly coupled SINS/LBL for underwater acoustic Multipath propagation. Sensors, 16(3), 357. https://doi.org/10.3390/s16030357

Downloads

Published

2025-01-31

How to Cite

Evolutionary Adaptations of Deep-Sea Creatures: Climate Change and Captive Fish Migration. (2025). Indus Journal of Bioscience Research, 3(1), 798-807. https://doi.org/10.70749/ijbr.v3i1.605