Circadian Disruptions and Their Impact on Inflammatory Pathways, Neuroendocrine Dysregulation, and Cardiovascular Risk: A Systematic Review and Meta-Analysis
DOI:
https://doi.org/10.70749/ijbr.v3i2.754Keywords:
Circadian Disruption, Shift Work, Inflammatory Markers, Neuroendocrine Dysregulation, Cardiovascular RiskAbstract
Background: Circadian disruptions, such as shift work, sleep irregularity, and chronic circadian misalignment, have been increasingly linked to adverse health outcomes, particularly affecting cardiovascular health. These disruptions alter inflammatory and neuroendocrine pathways, which may accelerate cardiovascular disease risk. This meta-analysis aimed to synthesize evidence on the association between circadian misalignment, inflammatory markers, neuroendocrine dysregulation, and cardiovascular outcomes. Methods: A systematic literature search was conducted using PubMed, Web of Science, PsycINFO, Cochrane Library, and Scopus databases, covering studies published between 2015 and 2024. Eligible studies included observational and experimental designs assessing the impact of documented circadian disruptions on inflammatory markers (CRP, IL-6, TNF-α), neuroendocrine biomarkers (cortisol, melatonin), and cardiovascular outcomes (coronary heart disease, cardiovascular events, metabolic risk). Quality assessment was performed using the Cochrane Risk of Bias Tool for experimental studies and the Newcastle-Ottawa Scale (NOS) for observational studies. Due to substantial heterogeneity across studies, a narrative synthesis supported by descriptive statistics, correlation analysis, and visual comparative techniques was applied, rather than a formal pooled effect size calculation. Results: Eight studies (n=744) reported increased inflammatory markers (CRP, IL-6, TNF-α) in circadian disruptions (p < 0.05–0.01). Misalignment was linked to altered cortisol rhythms and increased secretion (p < 0.05). Correlation analysis showed a moderate positive association between neuroendocrine dysregulation and cardiovascular risk. Shift work and chronic misalignment had the highest cardiovascular risk, with stronger effects in longer studies. Most studies had low-to-moderate bias. Conclusions: Circadian disruptions contribute to inflammation, neuroendocrine dysregulation, and cardiovascular risk. Maintaining circadian stability is crucial, particularly for shift workers. High-quality studies are needed for targeted interventions.
Downloads
References
Reutrakul, S., & Knutson, K. L. (2015). Consequences of circadian disruption on cardiometabolic health. Sleep Medicine Clinics, 10(4), 455–468. https://doi.org/10.1016/j.jsmc.2015.07.005
Vetter, C., Devore, E. E., Wegrzyn, L. R., Massa, J., Speizer, F. E., Kawachi, I., Rosner, B., Stampfer, M. J., & Schernhammer, E. S. (2016b). Association between rotating night shift work and risk of coronary heart disease among women. JAMA, 315(16), 1726. https://doi.org/10.1001/jama.2016.4454
Morris, C. J., Purvis, T. E., Hu, K., & Scheer, F. a. J. L. (2016). Circadian misalignment increases cardiovascular disease risk factors in humans. Proceedings of the National Academy of Sciences, 113(10). https://doi.org/10.1073/pnas.1516953113
Huang, T., Mariani, S., & Redline, S. (2020). Sleep irregularity and risk of cardiovascular events. Journal of the American College of Cardiology, 75(9), 991–999. https://doi.org/10.1016/j.jacc.2019.12.054
Inokawa, H., Umemura, Y., Shimba, A., Kawakami, E., Koike, N., Tsuchiya, Y., Ohashi, M., Minami, Y., Cui, G., Asahi, T., Ono, R., Sasawaki, Y., Konishi, E., Yoo, S., Chen, Z., Teramukai, S., Ikuta, K., & Yagita, K. (2020). Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59541-y
McHill, A. W., Melanson, E. L., Higgins, J., Connick, E., Moehlman, T. M., Stothard, E. R., & Wright, K. P. (2014). Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proceedings of the National Academy of Sciences, 111(48), 17302–17307. https://doi.org/10.1073/pnas.1412021111
Vetter, C., Devore, E. E., Wegrzyn, L. R., Massa, J., Speizer, F. E., Kawachi, I., Rosner, B., Stampfer, M. J., & Schernhammer, E. S. (2016). Association between rotating night shift work and risk of coronary heart disease among women. JAMA, 315(16), 1726. https://doi.org/10.1001/jama.2016.4454
Lin, J., Kuang, H., Jiang, J., Zhou, H., Peng, L., Yan, X., & Kuang, J. (2023). Circadian rhythms in cardiovascular function: Implications for cardiac diseases and therapeutic opportunities. Medical Science Monitor, 29. https://doi.org/10.12659/msm.942215
Azmi, N. a. S. M., Juliana, N., Azmani, S., Effendy, N. M., Abu, I. F., Teng, N. I. M. F., & Das, S. (2021). Cortisol on circadian rhythm and its effect on cardiovascular system. International Journal of Environmental Research and Public Health, 18(2), 676. https://doi.org/10.3390/ijerph18020676
Bowles, N. P., Thosar, S. S., Butler, M. P., Clemons, N. A., Robinson, L. D., Ordaz, O. H., Herzig, M. X., McHill, A. W., Rice, S. P. M., Emens, J., & Shea, S. A. (2022). The circadian system modulates the cortisol awakening response in humans. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.995452
Morris, C. J., Purvis, T. E., Hu, K., & Scheer, F. a. J. L. (2016). Circadian misalignment increases cardiovascular disease risk factors in humans. Proceedings of the National Academy of Sciences, 113(10). https://doi.org/10.1073/pnas.1516953113
Yang, H., Yang, L.-T., Liu, J., Tang, S., Zhao, X., Wang, Q., Zhang, S., Shi, M., Pan, W., & Yang, P.-C. (2018). Circadian protein CLK suppresses transforming growth factor-β expression in peripheral B cells of nurses with day-night shift rotation. PubMed, 10(12), 4331–4337.
Cuesta, M., Boudreau, P., Dubeau-Laramée, G., Cermakian, N., & Boivin, D. B. (2016). Simulated night shift disrupts circadian rhythms of immune functions in humans. The Journal of Immunology, 196(6), 2466–2475. https://doi.org/10.4049/jimmunol.1502422
Damasceno, A., Moraes, A. S., Farias, A., Damasceno, B. P., Santos, L. M. B. D., & Cendes, F. (2015). Disruption of melatonin circadian rhythm production is related to multiple sclerosis severity: A preliminary study. Journal of the Neurological Sciences, 353(1–2), 166–168. https://doi.org/10.1016/j.jns.2015.03.040
Cannizzaro, E., Cirrincione, L., Mazzucco, W., Scorciapino, A., Catalano, C., Ramaci, T., Ledda, C., & Plescia, F. (2020). Night-Time Shift Work and Related Stress Responses: A Study on Security Guards. International journal of environmental research and public health, 17(2), 562. https://doi.org/10.3390/ijerph17020562
Wright, K. P., Jr, Drake, A. L., Frey, D. J., Fleshner, M., Desouza, C. A., Gronfier, C., & Czeisler, C. A. (2015). Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain, behavior, and immunity, 47, 24–34. https://doi.org/10.1016/j.bbi.2015.01.004
Leproult, R., Copinschi, G., Buxton, O., & Van Cauter, E. (1997). Sleep loss results in an elevation of cortisol levels the next evening. Sleep, 20(10), 865–870. https://pubmed.ncbi.nlm.nih.gov/9415946/
Chapotot, F., Buguet, A., Gronfier, C., & Brandenberger, G. (2001). Hypothalamo-pituitary-adrenal axis activity is related to the level of central arousal: effect of sleep deprivation on the association of high-frequency waking electroencephalogram with cortisol release. Neuroendocrinology, 73(5), 312–321. https://doi.org/10.1159/000054648
Von Treuer, K., Norman, T. R., & Armstrong, S. M. (1996). Overnight human plasma melatonin, cortisol, prolactin, TSH, under conditions of normal sleep, sleep deprivation, and sleep recovery. Journal of pineal research, 20(1), 7–14. https://doi.org/10.1111/j.1600-079x.1996.tb00232.x
Weibel, L., Follenius, M., Spiegel, K., Ehrhart, J., & Brandenberger, G. (1995). Comparative effect of night and daytime sleep on the 24-hour cortisol secretory profile. Sleep, 18(7), 549–556. https://doi.org/10.1093/sleep/18.7.549
Weitzman, E. D., Zimmerman, J. C., Czeisler, C. A., & Ronda, J. (1983). Cortisol secretion is inhibited during sleep in normal man. The Journal of clinical endocrinology and metabolism, 56(2), 352–358. https://doi.org/10.1210/jcem-56-2-352
Scheer, F. A., Hilton, M. F., Mantzoros, C. S., & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4453–4458. https://doi.org/10.1073/pnas.0808180106
Vetter, C., Devore, E. E., Wegrzyn, L. R., Massa, J., Speizer, F. E., Kawachi, I., Rosner, B., Stampfer, M. J., & Schernhammer, E. S. (2016). Association between rotating night shift work and risk of coronary heart disease among women. JAMA, 315(16), 1726. https://doi.org/10.1001/jama.2016.4454
Kervezee, L., Kosmadopoulos, A., & Boivin, D. B. (2018). Metabolic and cardiovascular consequences of shift work: The role of circadian disruption and sleep disturbances. European Journal of Neuroscience, 51(1), 396–412. https://doi.org/10.1111/ejn.14216
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
