Spectroscopic Investigation and Synthesis of N-Ethyl-5-Tolyloxymethyl Triazole Derivatives

Authors

  • Shakeel Ahmed Institute of Chemistry, The Islamia University of Bahawalpur, Punjab, Pakistan.
  • Shiza Murad Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
  • Iqra Munir Department of Chemical and Pharmaceutical Sciences and Biotechnology, University of Camerino, Italy.
  • Samina Sheikh Department of Pharmacy Practice, Ziauddin University, Karachi, Sindh, Pakistan.
  • Qurat-ul-Ain Ahmad Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
  • Namal Shahid Department of Biochemistry, Bahauddin Zakariya University Multan, Punjab, Pakistan.
  • Syed Moman Ali Rizvi Department of Chemistry, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Abbas Shahid Department of Basic and Applied Chemistry, University of Central Punjab, Lahore, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i5.1234

Keywords:

N-ethylated Triazoles, Structure Elucidation, Triazole Derivatives, Spectroscopic Analysis, Synthesis of Triazole Compounds.

Abstract

High-nitrogen heterocycles' synthesis has attracted much interest because of their wide applicability in many different sectors. As a significant class of organic compounds, triazoles and their fused derivatives have emerged among these. A new triazole derivative, 4-ethyl-3-ethylthio-5-(p-tolyloxymethyl)-4H-1, 2, 4-triazole, is the subject of this work on synthesis and spectrum characterization. Ethyl 2-p-tolyloxy acetate is synthesized by reacting 3, 4-dimethoxyphenylacetic acid with ethanol under concentrated H2SO4, starting the process. The ester product is subsequently transformed into 2-p-tolyloxyacetohydrazide, which is further reacted with ethyl isothiocyanate to produce 2-p-tolyloxythiosemicarbazide. Cyclizing 275 in an alkaline media generates 4-ethyl-5-(p-tolyloxymethyl)-4H-1, 2, 4-triazole-3-thiol. 276 interacts with several alkyl halides in the last stage to create N-ethyl-3, 5-substituted derivatives (278a-h). Infrared (IR), nuclear magnetic resonance (NMR), electron ionization mass spectrometry (EI-MS), and high-resolution electron ionization mass spectrometry (HR-EI-MS) were used to characterize each chemical. This work adds to the expanding area of nitrogen-rich heterocycles by providing fresh triazole derivatives with possible uses in industrial and medical chemistry.

Downloads

Download data is not yet available.

References

Abdelrehim, E. M. (2021). Synthesis and screening of new [1,3,4]Oxadiazole, [1,2,4]Triazole, and [1,2,4]triazolo[4,3-b][1,2,4]triazole derivatives as potential antitumor agents on the colon carcinoma cell line (HCT-116). ACS Omega, 6(2), 1687-1696.

https://doi.org/10.1021/acsomega.0c05718

Almasirad, A., Shafiee, A., Abdollahi, M., Noeparast, A., Shahrokhinejad, N., Vousooghi, N., Tabatabai, S. A., & Khorasani, R. (2010). Synthesis and analgesic activity of new 1,3,4-oxadiazoles and 1,2,4-triazoles. Medicinal Chemistry Research, 20(4), 435-442.

https://doi.org/10.1007/s00044-010-9335-0

Al-Mulla, A. (2017). A review: biological importance of heterocyclic compounds. Der Pharma Chem, 9(13), 141-147.

Arora, P., Arora, V., Lamba, H. S., & Wadhwa, D. (2012). Importance of heterocyclic chemistry: A review. International Journal of Pharmaceutical Sciences and Research, 3(9), 2947.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=632510ac666e6172735315d92e17af9a580e99c2

Asif, M. (2015). Antiviral and antiparasitic activities of various substituted triazole derivatives: A mini. Chem. Int, 1(2), 71-80.

Ata, A., & Naz, S. (2022). Synthesis of Bioactive heterocyclic compounds. Greener Synthesis of Organic Compounds, Drugs and Natural Products, 137-150.

https://doi.org/10.1201/9781003089162-8

Bayrak, H., Demirbas, A., Demirbas, N., & Karaoglu, S. A. (2009). Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. European Journal of Medicinal Chemistry, 44(11), 4362-4366.

https://doi.org/10.1016/j.ejmech.2009.05.022

Campos, V. R., Abreu, P. A., Castro, H. C., Rodrigues, C. R., Jordão, A. K., Ferreira, V. F., De Souza, M. C., Santos, F. D., Moura, L. A., Domingos, T. S., Carvalho, C., Sanchez, E. F., Fuly, A. L., & Cunha, A. C. (2009). Synthesis, biological, and theoretical evaluations of new 1,2,3-triazoles against the hemolytic profile of the Lachesis muta snake venom. Bioorganic & Medicinal Chemistry, 17(21), 7429-7434.

https://doi.org/10.1016/j.bmc.2009.09.031

Koparır, M., Cansız, A., & Demirdağ, A. (2004). Synthesis of some new 4,5-Substituted-4H-1,2,4-triazole-3-thiol derivatives. Molecules, 9(4), 204-212.

https://doi.org/10.3390/90400204

Colanceska-Ragenovic, K., Dimova, V., Kakurinov, V., Molnar, D., & Buzarovska, A. (2001). Synthesis, antibacterial and Antifungal activity of 4-Substituted-5-Aryl-1,2,4-Triazoles. Molecules, 6(10), 815-824.

https://doi.org/10.3390/61000815

Dastjerdi, H. F., Naderi, N., Nematpour, M., Rezaee, E., Mahboubi-Rabbani, M., Ebrahimi, M., Hosseinipoor, S., Hosseini, O., & Tabatabai, S. A. (2020). Design, synthesis and anti-diabetic activity of novel 1, 2, 3-triazole-5-carboximidamide derivatives as dipeptidyl peptidase-4 inhibitors. Journal of Molecular Structure, 1221, 128745.

https://doi.org/10.1016/j.molstruc.2020.128745

Dehestani, L., Ahangar, N., Hashemi, S. M., Irannejad, H., Honarchian Masihi, P., Shakiba, A., & Emami, S. (2018). Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorganic Chemistry, 78, 119-129.

https://doi.org/10.1016/j.bioorg.2018.03.001

Desai, N. C., Shihora, P. N., Rajpara, K. M., Joshi, V. V., Vaghani, H. V., Satodiya, H. M., & Dodiya, A. M. (2011). Synthesis, characterization, and antimicrobial evaluation of novel naphthalene-based 1,2,4-triazoles. Medicinal Chemistry Research, 21(10), 2981-2989.

https://doi.org/10.1007/s00044-011-9833-8

Düğdü, E., Ünver, Y., Ünlüer, D., & Sancak, K. (2014). Synthesis and biological properties of novel triazole-thiol and Thiadiazole derivatives of the 1,2,4-Triazole-3(5)-one class. Molecules, 19(2), 2199-2212.

https://doi.org/10.3390/molecules19022199

Gupta, A. K., Prachand, S., Patel, A., & Jain, S. (2012). Synthesis of some 4-amino-5-(substituted-phenyl)-4H-[1, 2, 4] triazole-3-thiol derivatives and antifungal activity. Int J Pharm Life Sci, 3(7), 1848-1857.

Hameed, A. A., & Hassan, F. (2014). Synthesis, characterization and antioxidant activity of some 4-amino-5-phenyl-4h-1, 2, 4-triazole-3-thiol derivatives. Int J Appl, 4, 202-11.

Hasan, A., Thomas, N. F., & Gapil, S. (2011). Synthesis, characterization and Antifungal evaluation of 5-Substituted-4-Amino-1,2,4-Triazole-3-Thioesters. Molecules, 16(2), 1297-1309.

https://doi.org/10.3390/molecules16021297

Hussain, S., Sharma, J., & Amir, M. (2008). Synthesis and antimicrobial activities of 1,2,4‐Triazole and 1,3,4‐Thiadiazole derivatives of 5‐Amino‐2‐Hydroxybenzoic acid. Journal of Chemistry, 5(4), 963-968.

https://doi.org/10.1155/2008/924734

Joanna, L., Talarek, S., Orzelska, J., Fidecka, S., Wujec, M., & Plech, T. (2013). The antinociceptive effect of 4-substituted derivatives of 5-(4-chlorophenyl)-2-(morpholin-4-ylmethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 387(4), 367-375.

https://doi.org/10.1007/s00210-013-0938-0

Kalhor, M., Shabani, M., Nikokar, I., & Banisaeed, S. R. (2015). Synthesis, characterization and antibacterial activity of some novel thiosemicarbazides, 1, 2, 4-triazol-3-thiols and their S-substituted derivatives. Iranian Journal of Pharmaceutical Research: IJPR, 14(1), 67.

https://pmc.ncbi.nlm.nih.gov/articles/PMC4277620/

Kapri, K. P., Singar, S. B., Khanal, S., & Shakya, B. (2020). Synthesis of Schiff bases of 4-Amino-5- (2-hydroxyphenyl)-4H- 1,2,4-Triazole-3-Thiol as potent antimicrobial agents. Amrit Research Journal, 1(1), 29-36.

https://doi.org/10.3126/arj.v1i1.32450

Khanage, S. G., Raju, A., Mohite, P. B., & Pandhare, R. B. (2013). Analgesic activity of some 1, 2, 4-triazole heterocycles clubbed with pyrazole, tetrazole, isoxazole and pyrimidine. Advanced Pharmaceutical Bulletin, 3(1), 13.

https://doi.org/10.5681/apb.2013.003

Kidwai, M., Venktaramanan, R., Mohan, R., & Sapra, P. (2002). Cancer chemotherapy and heterocyclic compounds. Current Medicinal Chemistry, 9(12), 1209-1228.

https://doi.org/10.2174/0929867023370059

Kumudha, D., Leonard, J. T., Muthumani, M., Chidhambaranathan, N., & Kalavathi, T. (2013). Synthesis and evaluation of some 1, 2, 4-triazole derivatives as anticonvulsant, anti-inflammatory and antimicrobial agents. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 5-8.

Li, X., Li, X., Liu, H., Zhou, X., & Shao, Z. (2012). Synthesis and evaluation of antitumor activities of novel chiral 1,2,4-triazole Schiff bases bearing γ-butenolide moiety. Organic and Medicinal Chemistry Letters, 2(1), 26.

https://doi.org/10.1186/2191-2858-2-26

Mahdi, M. F., Naser, N. H., & Hammud, N. H. (2017). Synthesis and preliminary pharmacological evaluation of new naproxen analogues having 1, 2, 4-triazole-3-thiol. International Journal of Pharmacy and Pharmaceutical Sciences, 9(7), 66.

https://doi.org/10.22159/ijpps.2017v9i7.18273

Maji, K., Abbasi, M., Podder, D., Datta, R., & Haldar, D. (2018). Potential Antileishmanial activity of a triazole‐based hybrid peptide against Leishmania major. ChemistrySelect, 3(36), 10220-10225.

https://doi.org/10.1002/slct.201802002

Nadeem, H., Mohsin, M., Afzaal, H., Riaz, S., Zahid, A., & Muhammad, S. A. (2013). Synthesis and <i>in Vitro</i> Biological activities of 4,5-Disubstituted 1,2,4-Triazole-3-Thiols. Advances in Microbiology, 03(04), 366-375.

https://doi.org/10.4236/aim.2013.34050

Nanjan, M., Mohammed, M., Prashantha Kumar, B., & Chandrasekar, M. (2018). Thiazolidinediones as antidiabetic agents: A critical review. Bioorganic Chemistry, 77, 548-567.

https://doi.org/10.1016/j.bioorg.2018.02.009

Patel, K. R., Brahmbhatt, J. G., Pandya, P. A., Daraji, D. G., Patel, H. D., Rawal, R. M., & Baran, S. K. (2021). Design, synthesis and biological evaluation of novel 5-(4-chlorophenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols as an anticancer agent. Journal of Molecular Structure, 1231, 130000.

https://doi.org/10.1016/j.molstruc.2021.130000

Pertino, M., Vega, C., Rolón, M., Coronel, C., Rojas de Arias, A., & Schmeda-Hirschmann, G. (2017). Antiprotozoal activity of Triazole derivatives of Dehydroabietic acid and Oleanolic acid. Molecules, 22(3), 369.

https://doi.org/10.3390/molecules22030369

Sahoo, P. K., Sharma, R., & Pattanayak, P. (2009). Synthesis and evaluation of 4-amino-5-phenyl-4H-[1,2,4]-triazole-3-thiol derivatives as antimicrobial agents. Medicinal Chemistry Research, 19(2), 127-135.

https://doi.org/10.1007/s00044-009-9178-8

Saini, M. S., Kumar, A., Dwivedi, J., & Singh, R. (2013). A review: biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res, 4(3), 66-77.

https://www.ijpsr.info/docs/IJPSR13-04-03-005.pdf

Shukla, P. K., Soni, N., Verma, A., & Jha, A. K. (2014). Synthesis, characterization and in vitro biological evaluation of a series of 1, 2, 4-triazoles derivatives & triazole based schiff bases. Der Pharma Chemica, 6(3), 153-160.

Singh, A. K., & Kandel, K. R. (2012). Synthesis of Triazole derivative:[4-(benzylideneamino)-5-phenyl-4H-1, 2, 4–triazole-3-thiol]. Journal of Nepal Chemical Society, 30, 174-177.

https://doi.org/10.3126/jncs.v30i0.9391

SINGH, I., KAUR, H., KUMAR, S., KUMAR, A., & KUMAR, A. (2010). PYRIDINYL/QUINAZOLINYL/AZETIDINONYL/THIAZOLIDINONYL TRIAZOLES. International Journal of Pharma and Bio Sciences, 1, 1.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4c467274ec06121336a4ce8ea29942e622389edc

Singh, R. J., & Singh, D. K. (2009). Syntheses, characterization and biological activity of some 1, 2, 4‐Triazole derivatives. Journal of Chemistry, 6(3), 796-800.

https://doi.org/10.1155/2009/419214

Turan-Zitouni, G., Kaplancıklı, Z. A., Yıldız, M. T., Chevallet, P., & Kaya, D. (2005). Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives. European Journal of Medicinal Chemistry, 40(6), 607-613.

https://doi.org/10.1016/j.ejmech.2005.01.007

Zhang, S., Xu, Z., Gao, C., Ren, Q., Chang, L., Lv, Z., & Feng, L. (2017). Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry, 138, 501-513.

https://doi.org/10.1016/j.ejmech.2017.06.051

Downloads

Published

2025-05-10

How to Cite

Ahmed, S., Murad, S., Munir, I., Sheikh, S., Ahmad, Q.- ul-A., Shahid, N., Rizvi, S. M. A., & Shahid, A. (2025). Spectroscopic Investigation and Synthesis of N-Ethyl-5-Tolyloxymethyl Triazole Derivatives. Indus Journal of Bioscience Research, 3(5), 288-296. https://doi.org/10.70749/ijbr.v3i5.1234